Here is a general list of all the Ways Stem Cells heal tissues or create new tissue.
1. Stem cells have long been known to have the ability to differentiate (ie become/transform) into “good/normal” tissue. Embryonic stem cells have been fraught with difficulties in coaxing them into “good/normal” tissue and there are major ethical issues.
Adult stem cells turn out to be a more robust and reliable source of cell to heal damaged cells. These adult stem cells, such as from fat (adipose derived) or bone marrow, have the ability to transform into different cells. This ability to transform into another type of cell depends on where the cell is placed and what other growth factors are around.
2. Stem cells secrete growth factors which can help heal damage cells.
3. New research shows that the mere fact that a stem cell touches or even pass by another cell, stimulates the other cell or damaged cell to behave better.
More information below.
SLC
- Published: October 11, 2017
- https://doi.org/10.1371/journal.pone.0186238
Abstract
Figures
Introduction
Materials and methods
Human sclerocorneal tissue
Isolation, culture, and characterization of the primary ASCs
Isolation of limbal epithelial cells
Cell culture of LSCs
Collection of expanded LSCs at the end of 14-day culture
Success rate of culture
RNA isolation, reverse transcription and quantitative real-time PCR
Immunocytochemistry and quantitation
Analysis of cell-cell contact in the 3D CC-ASC culture by high resolution light microscopy and electron microscopy
Results
Characterization of the ASCs
Optimization of the cell density of ASCs as feeder cells
ASCs do not support the growth of LSCs in single cell suspension
ASCs support the growth of LECs in cell clusters
Few direct cell-cell contacts between the LSCs and the ASC feeder cells in 3D CC-ASC culture
Discussion
Supporting information
S1 Fig. Representative images showing the cell clusters of LECs.
Acknowledgments
References
- 1.Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229(5286):560–1. pmid:4925352.
- 2.Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57(2):201–9. pmid:2702690.
- 3.Tsai RJ, Sun TT, Tseng SC. Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits. Ophthalmology. 1990;97(4):446–55. pmid:1691476.
- 4.Huang AJ, Tseng SC. Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci. 1991;32(1):96–105. pmid:1702774.
- 5.Ebato B, Friend J, Thoft RA. Comparison of central and peripheral human corneal epithelium in tissue culture. Invest Ophthalmol Vis Sci. 1987;28(9):1450–6. pmid:3623831.
- 6.Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SC. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods. 2011;17(5):537–48. pmid:21175372; PubMed Central PMCID: PMC3129703.
- 7.Funderburgh JL, Funderburgh ML, Du Y. Stem Cells in the Limbal Stroma. The ocular surface. 2016;14(2):113–20. pmid:26804252; PubMed Central PMCID: PMC4842326.
- 8.Xie HT, Chen SY, Li GG, Tseng SC. Isolation and expansion of human limbal stromal niche cells. Invest Ophthalmol Vis Sci. 2012;53(1):279–86. pmid:22167096; PubMed Central PMCID: PMC3292364.
- 9.Li W, Hayashida Y, Chen YT, Tseng SC. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res. 2007;17(1):26–36. pmid:17211449; PubMed Central PMCID: PMC3190132.
- 10.Hayashi R, Yamato M, Sugiyama H, Sumide T, Yang J, Okano T, et al. N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells. 2007;25(2):289–96. pmid:17008425.
- 11.Tsai RJ, Li L, Chen J. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells(1). Am J Ophthalmol. 2000;130(4):543. pmid:11024443.
- 12.Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation. 2001;72(9):1478–85. pmid:11707733.
- 13.Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S. 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem. 2011;112(4):993–1002. pmid:21308743.
- 14.Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55. pmid:20573916.
- 15.Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11(2):228–32. pmid:15685172.
- 16.Johnen S, Wickert L, Meier M, Salz AK, Walter P, Thumann G. Presence of xenogenic mouse RNA in RPE and IPE cells cultured on mitotically inhibited 3T3 fibroblasts. Invest Ophthalmol Vis Sci. 2011;52(5):2817–24. pmid:21220557.
- 17.Mendoza R, Vaughan AE, Miller AD. The left half of the XMRV retrovirus is present in an endogenous retrovirus of NIH/3T3 Swiss mouse cells. J Virol. 2011;85(17):9247–8. pmid:21697491; PubMed Central PMCID: PMC3165791.
- 18.Nakamura T, Inatomi T, Sotozono C, Ang LP, Koizumi N, Yokoi N, et al. Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology. 2006;113(10):1765–72. pmid:16905193.
- 19.Kolli S, Ahmad S, Lako M, Figueiredo F. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells. 2010;28(3):597–610. pmid:20014040.
- 20.Meller D, Fuchsluger T, Pauklin M, Steuhl KP. Ocular surface reconstruction in graft-versus-host disease with HLA-identical living-related allogeneic cultivated limbal epithelium after hematopoietic stem cell transplantation from the same donor. Cornea. 2009;28(2):233–6. pmid:19158575.
- 21.Kawashima M, Kawakita T, Satake Y, Higa K, Shimazaki J. Phenotypic study after cultivated limbal epithelial transplantation for limbal stem cell deficiency. Arch Ophthalmol. 2007;125(10):1337–44. pmid:17923540.
- 22.Grueterich M, Espana EM, Touhami A, Ti SE, Tseng SC. Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology. 2002;109(8):1547–52. pmid:12153809.
- 23.Baradaran-Rafii A, Ebrahimi M, Kanavi MR, Taghi-Abadi E, Aghdami N, Eslani M, et al. Midterm outcomes of autologous cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea. 2010;29(5):502–9. pmid:20299977.
- 24.Ang LP, Sotozono C, Koizumi N, Suzuki T, Inatomi T, Kinoshita S. A comparison between cultivated and conventional limbal stem cell transplantation for Stevens-Johnson syndrome. Am J Ophthalmol. 2007;143(1):178–80. pmid:17188066.
- 25.Liu J, Sheha H, Fu Y, Liang L, Tseng SC. Update on amniotic membrane transplantation. Expert Rev Ophthalmol. 2010;5(5):645–61. pmid:21436959; PubMed Central PMCID: PMC3061461.
- 26.Hopkinson A, McIntosh RS, Tighe PJ, James DK, Dua HS. Amniotic membrane for ocular surface reconstruction: donor variations and the effect of handling on TGF-beta content. Invest Ophthalmol Vis Sci. 2006;47(10):4316–22. pmid:17003421.
- 27.Chen YT, Li W, Hayashida Y, He H, Chen SY, Tseng DY, et al. Human amniotic epithelial cells as novel feeder layers for promoting ex vivo expansion of limbal epithelial progenitor cells. Stem Cells. 2007;25(8):1995–2005. pmid:17495107; PubMed Central PMCID: PMC3197019.
- 28.Zhang X, Sun H, Li X, Yuan X, Zhang L, Zhao S. Utilization of human limbal mesenchymal cells as feeder layers for human limbal stem cells cultured on amniotic membrane. J Tissue Eng Regen Med. 2010;4(1):38–44. pmid:19813216.
- 29.Dziasko MA, Tuft SJ, Daniels JT. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments. Exp Eye Res. 2015;138:70–9. pmid:26142953.
- 30.Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54. pmid:24232253; PubMed Central PMCID: PMC3849579.
- 31.Hwang ST, Kang SW, Lee SJ, Lee TH, Suh W, Shim SH, et al. The expansion of human ES and iPS cells on porous membranes and proliferating human adipose-derived feeder cells. Biomaterials. 2010;31(31):8012–21. pmid:20674000.
- 32.Kim JS, Kwon D, Hwang ST, Lee DR, Shim SH, Kim HC, et al. hESC expansion and stemness are independent of connexin forty-three-mediated intercellular communication between hESCs and hASC feeder cells. PLoS One. 2013;8(7):e69175. pmid:23922689; PubMed Central PMCID: PMC3724839.
- 33.Sugiyama H, Maeda K, Yamato M, Hayashi R, Soma T, Hayashida Y, et al. Human adipose tissue-derived mesenchymal stem cells as a novel feeder layer for epithelial cells. J Tissue Eng Regen Med. 2008;2(7):445–9. pmid:18792424.
- 34.Mei H, Gonzalez S, Nakatsu MN, Baclagon ER, Lopes VS, Williams DS, et al. A three-dimensional culture method to expand limbal stem/progenitor cells. Tissue Eng Part C Methods. 2014;20(5):393–400. pmid:24047104; PubMed Central PMCID: PMC4005490.
- 35.Feng Y, Borrelli M, Reichl S, Schrader S, Geerling G. Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res. 2014;39(6):541–52. pmid:24405104.
- 36.de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells. 2005;23(1):63–73. pmid:15625123; PubMed Central PMCID: PMC2906389.
- 37.Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A. 2005;102(27):9523–8. pmid:15983386; PubMed Central PMCID: PMCPMC1172259.
- 38.Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103(1):49–62. pmid:2424919; PubMed Central PMCID: PMC2113783.
- 39.Kasper M, Moll R, Stosiek P, Karsten U. Patterns of cytokeratin and vimentin expression in the human eye. Histochemistry. 1988;89(4):369–77. pmid:2457569.
- 40.Joyce NC, Meklir B, Joyce SJ, Zieske JD. Cell cycle protein expression and proliferative status in human corneal cells. Invest Ophthalmol Vis Sci. 1996;37(4):645–55. pmid:8595965.
- 41.Corselli M, Chin CJ, Parekh C, Sahaghian A, Wang W, Ge S, et al. Perivascular support of human hematopoietic stem/progenitor cells. Blood. 2013;121(15):2891–901. pmid:23412095; PubMed Central PMCID: PMC3707421.
- 42.Sousa BR, Parreira RC, Fonseca EA, Amaya MJ, Tonelli FM, Lacerda SM, et al. Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications. Cytometry A. 2014;85(1):43–77. pmid:24700575.
- 43.Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 2014;7(2):118–26. pmid:25473449; PubMed Central PMCID: PMC4249894.
- 44.Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. pmid:16923606.
- 45.Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83(1):134–40. pmid:23184564; PubMed Central PMCID: PMC4157311.
- 46.Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Peault B, Rubin JP, et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry A. 2010;77(1):22–30. pmid:19852056; PubMed Central PMCID: PMC4148047.
- 47.Satish L, Krill-Burger JM, Gallo PH, Etages SD, Liu F, Philips BJ, et al. Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage. BMC Med Genomics. 2015;8:41. pmid:26205789; PubMed Central PMCID: PMC4513754.
- 48.Hauschka PV. Osteocalcin: the vitamin K-dependent Ca2+-binding protein of bone matrix. Haemostasis. 1986;16(3–4):258–72. pmid:3530901.
- 49.Nakatsu MN, Ding Z, Ng MY, Truong TT, Yu F, Deng SX. Wnt/beta-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci. 2011;52(7):4734–41. pmid:21357396; PubMed Central PMCID: PMC3175950.
- 50.Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg. 2001;27(9):819–26. pmid:11553171.
- 51.Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79(4):235–44. pmid:19432707.
- 52.Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8. pmid:23570660; PubMed Central PMCID: PMC3979435.
- 53.Wosnitza M, Hemmrich K, Groger A, Graber S, Pallua N. Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation. 2007;75(1):12–23. pmid:17244018.
- 54.Aksu AE, Rubin JP, Dudas JR, Marra KG. Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann Plast Surg. 2008;60(3):306–22. pmid:18443514.
- 55.Kang SK, Jun ES, Bae YC, Jung JS. Interactions between human adipose stromal cells and mouse neural stem cells in vitro. Brain Res Dev Brain Res. 2003;145(1):141–9. pmid:14519500.
- 56.Kim JY, Park CD, Lee JH, Lee CH, Do BR, Lee AY. Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes. Acta Derm Venereol. 2012;92(1):16–23. pmid:21879248.
- 57.Pellegrini G, Rama P, Matuska S, Lambiase A, Bonini S, Pocobelli A, et al. Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. Regen Med. 2013;8(5):553–67. pmid:23725042.
- 58.Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32. pmid:22411467; PubMed Central PMCID: PMC3654667.
- 59.Gonzalez S, Mei H, Nakatsu MN, Baclagon ER, Deng SX. A 3D culture system enhances the ability of human bone marrow stromal cells to support the growth of limbal stem/progenitor cells. Stem Cell Res. 2016;16(2):358–64. pmid:26896856; PubMed Central PMCID: PMC4828302.
- 60.Nakatsu MN, Gonzalez S, Mei H, Deng SX. Human limbal mesenchymal cells support the growth of human corneal epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci. 2014;55(10):6953–9. pmid:25277234; PubMed Central PMCID: PMC4215742.
- 61.Gonzalez S, Deng SX. Presence of native limbal stromal cells increases the expansion efficiency of limbal stem/progenitor cells in culture. Exp Eye Res. 2013;116:169–76. pmid:24016868; PubMed Central PMCID: PMC3900305.
- 62.Miyashita H, Shimmura S, Higa K, Yoshida S, Kawakita T, Shimazaki J, et al. A novel NIH/3T3 duplex feeder system to engineer corneal epithelial sheets with enhanced cytokeratin 15-positive progenitor populations. Tissue Eng Part A. 2008;14(7):1275–82. pmid:18433313.
- 63.Kawakita T, Shimmura S, Hornia A, Higa K, Tseng SC. Stratified epithelial sheets engineered from a single adult murine corneal/limbal progenitor cell. J Cell Mol Med. 2008;12(4):1303–16. pmid:18318692; PubMed Central PMCID: PMCPMC3225011.
2. https://stemcells.nih.gov/info/basics/7.htm
Can Stem Cells Mend a Broken Heart?: Stem Cells for the Future Treatment of Heart Disease
A few small studies have also been carried out in humans, usually in patients who are undergoing open-heart surgery. Several of these have demonstrated that stem cells that are injected into the circulation or directly into the injured heart tissue appear to improve cardiac function and/or induce the formation of new capillaries. The mechanism for this repair remains controversial, and the stem cells likely regenerate heart tissue through several pathways. However, the stem cell populations that have been tested in these experiments vary widely, as do the conditions of their purification and application. Although much more research is needed to assess the safety and improve the efficacy of this approach, these preliminary clinical experiments show how stem cells may one day be used to repair damaged heart tissue, thereby reducing the burden of cardiovascular disease.
Methods Mol Biol. 2011;702:289-98. doi: 10.1007/978-1-61737-960-4_21.