Stem Cell Use to Treat Parotid Gland Disease: all the articles from 2014 roughly till today

Abd El-Haleem MR, Selim AO, Attia GM.
Cytotherapy. 2018 Feb;20(2):204-217. doi: 10.1016/j.jcyt.2017.10.003. Epub 2017 Dec 15.
PMID:

 

29254763
2.
Togarrati PP, Dinglasan N, Desai S, Ryan WR, Muench MO.
Oral Dis. 2017 Dec 2. doi: 10.1111/odi.12812. [Epub ahead of print]
PMID:

 

29197149
3.
4.
Hany E, Sobh MA, ElKhier MTA, ElSabaa HM, Zaher AR.
Int J Stem Cells. 2017 Nov 30;10(2):169-178. doi: 10.15283/ijsc17022.
PMID:

 

28844126

 

Free PMC Article

5.
Kota SK, Pernicone E, Leaf DE, Stillman IE, Waikar SS, Kota SB.
J Am Soc Nephrol. 2017 Dec;28(12):3473-3478. doi: 10.1681/ASN.2016121265. Epub 2017 Aug 3.
PMID:

 

28775000
6.
Ma C, Fan Z, Gao Z, Wang S, Shan Z.
Gene Ther. 2017 Nov;24(11):692-698. doi: 10.1038/gt.2017.70. Epub 2017 Jul 28.
PMID:

 

28753201
7.
Henkin RI, Knöppel AB, Abdelmeguid M, Stateman WA, Hosein S.
Arch Oral Biol. 2017 Oct;82:263-270. doi: 10.1016/j.archoralbio.2017.06.022. Epub 2017 Jun 16.
PMID:

 

28672219
8.
Togarrati PP, Sasaki RT, Abdel-Mohsen M, Dinglasan N, Deng X, Desai S, Emmerson E, Yee E, Ryan WR, da Silva MCP, Knox SM, Pillai SK, Muench MO.
Sci Rep. 2017 Jun 14;7(1):3484. doi: 10.1038/s41598-017-03681-1.
PMID:

 

28615711

 

Free PMC Article

9.
Xu QL, Furuhashi A, Zhang QZ, Jiang CM, Chang TH, Le AD.
J Dent Res. 2017 Aug;96(9):1035-1043. doi: 10.1177/0022034517711146. Epub 2017 May 25.
PMID:

 

28541773
10.
Srinivasan PP, Patel VN, Liu S, Harrington DA, Hoffman MP, Jia X, Witt RL, Farach-Carson MC, Pradhan-Bhatt S.
Stem Cells Transl Med. 2017 Jan;6(1):110-120. doi: 10.5966/sctm.2016-0083. Epub 2016 Aug 18.
PMID:

 

28170182

 

Free PMC Article

11.
Huang Y, Chen N, Miao D.
Exp Ther Med. 2016 Dec;12(6):3685-3693. doi: 10.3892/etm.2016.3843. Epub 2016 Oct 26.
PMID:

 

28105098

 

Free PMC Article

12.
Choi JS, Shin HS, An HY, Kim YM, Lim JY.
Oncotarget. 2017 Feb 21;8(8):13496-13508. doi: 10.18632/oncotarget.14583.
PMID:

 

28086221

 

Free PMC Article

13.
Mueller SK, Iro H, Lell M, Seifert F, Bohr C, Scherl C, Agaimy A, Traxdorf M.
J Otolaryngol Head Neck Surg. 2017 Jan 5;46(1):1. doi: 10.1186/s40463-016-0180-0.
PMID:

 

28057072

 

Free PMC Article

14.
Henkin RI, Knöppel AB, Abdelmeguid M, Stateman WA, Hosein S.
J Oral Pathol Med. 2017 Oct;46(9):829-833. doi: 10.1111/jop.12541. Epub 2017 Feb 7.
PMID:

 

28009451
15.
Eisbruch A.
Ann Transl Med. 2016 Oct;4(Suppl 1):S16. No abstract available.
PMID:

 

27867984

 

Free PMC Article

16.
Yi T, Lee S, Choi N, Shin HS, Kim J, Lim JY.
Sci Rep. 2016 Nov 8;6:36303. doi: 10.1038/srep36303.
PMID:

 

27824146

 

Free PMC Article

17.
Wang Z, Ju Z, He L, Li Z, Liu Y, Liu B.
J Oral Maxillofac Surg. 2017 Aug;75(8):1784-1790. doi: 10.1016/j.joms.2016.08.001. Epub 2016 Aug 16.
PMID:

 

27621149
18.
Surucu M, Shah KK, Roeske JC, Choi M, Small W Jr, Emami B.
Technol Cancer Res Treat. 2017 Apr;16(2):218-223. doi: 10.1177/1533034616662165. Epub 2016 Aug 19.
PMID:

 

27502958

 

Free PMC Article

19.
Yan X, Xu N, Meng C, Wang B, Yuan J, Wang C, Li Y.
Am J Transl Res. 2016 Feb 15;8(2):419-32. eCollection 2016.
PMID:

 

27158336

 

Free PMC Article

20.
Nevens D, Nuyts S.
Cancer Med. 2016 Jun;5(6):1147-53. doi: 10.1002/cam4.609. Epub 2016 Feb 16. Review.
PMID:

 

26880659

 

Free PMC Article

21.
22.
Maruyama EO, Aure MH, Xie X, Myal Y, Gan L, Ovitt CE.
PLoS One. 2016 Jan 11;11(1):e0146711. doi: 10.1371/journal.pone.0146711. eCollection 2016.
PMID:

 

26751783

 

Free PMC Article

23.
Hong C, Qingquan F, Jinhua T, Qiaoling C, Suhua Z.
Hua Xi Kou Qiang Yi Xue Za Zhi. 2016 Oct 1;34(5):483-487. doi: 10.7518/hxkq.2016.05.010. Chinese.
PMID:

 

28326706

 

Free Article

24.
An HY, Shin HS, Choi JS, Kim HJ, Lim JY, Kim YM.
PLoS One. 2015 Nov 3;10(11):e0141862. doi: 10.1371/journal.pone.0141862. eCollection 2015.
PMID:

 

26529411

 

Free PMC Article

25.
van Luijk P, Pringle S, Deasy JO, Moiseenko VV, Faber H, Hovan A, Baanstra M, van der Laan HP, Kierkels RG, van der Schaaf A, Witjes MJ, Schippers JM, Brandenburg S, Langendijk JA, Wu J, Coppes RP.
Sci Transl Med. 2015 Sep 16;7(305):305ra147. doi: 10.1126/scitranslmed.aac4441.
PMID:

 

26378247

 

Free PMC Article

26.
Malzone MG, Campanile AC, Losito NS, Longo F, Perri F, Caponigro F, Schiavone C, Ionna F, Maiello F, Martinuzzi C, Nasti S, Botti G, Fulciniti F.
Diagn Cytopathol. 2015 Aug;43(8):654-8. doi: 10.1002/dc.23275. Epub 2015 May 21.
PMID:

 

25995191
27.
Zhang BX, Zhang ZL, Lin AL, Wang H, Pilia M, Ong JL, Dean DD, Chen XD, Yeh CK.
Tissue Eng Part A. 2015 May;21(9-10):1611-20. doi: 10.1089/ten.TEA.2014.0411. Epub 2015 Mar 9.
PMID:

 

25625623

 

Free PMC Article

28.
Chen Y, Niu Z, Xue Y, Yuan F, Fu Y, Bai N.
Br J Oral Maxillofac Surg. 2014 Oct;52(8):740-5. doi: 10.1016/j.bjoms.2014.06.006. Epub 2014 Jun 30.
PMID:

 

24993354

 2017 Aug 16;10:295-299. doi: 10.2147/IMCRJ.S142514. eCollection 2017.

First-in-man intraglandular implantation of stromal vascular fraction and adipose-derived stem cells plus platelet-rich plasma in irradiation-induced gland damage: a case study.

Abstract

BACKGROUND:

Stromal vascular fraction (SVF) is a mixture of cells which can be isolated from a mini-lipoaspirate of fat tissue. Platelet-rich plasma (PRP) is a mixture of growth factors and other nutrients which can be obtained from peripheral blood. Adipose-derived stem/stromalcells (ADSCs) can be isolated from fat tissue and expanded in culture. The SVF includes a variety of different cells such as ADSCs, pericytes, endothelial/progenitor cells, and a mix of different growth factors. The adipocytes (fat cells) can be removed via centrifugation. Here, we describe the rationale and, to our knowledge, the first clinical implementation of SVF and PRP followed by repeat dosing of culture-expanded ADSCs into a patient with severe xerostomia postirradiation.

METHODS:

Approximately 120 mLs of adipose tissue was removed via mini-lipoaspirate procedure under local anesthetic. The SVF was prepared from half of the fat and resuspended in PRP. The mixture was delivered via ultrasound directly into the submandibular and parotidglands on both the right and left sides. The remaining 60 mLs of fat was processed to culture-expand ADSCs. The patient received seven follow-up injections of the ADSCs plus PRP at 5, 8, 16, 18, 23, 28, and 31 months postliposuction. The subject was monitored over a period of 31 months for safety (adverse events), glandular size via ultrasound and saliva production.

RESULTS:

Throughout the 31-month monitoring period, no safety events such as infection or severe adverse events were reported. The patient demonstrated an increase in gland size as measured by ultrasound which corresponded to increased saliva production.

CONCLUSION:

Overall, the patient reported improved quality of life and willingness to continue treatments. The strong safety profile and preliminary efficacy results warrant larger studies to determine if this is a feasible treatment plan for patients postradiation.

 2009 Sep;92(3):466-71. doi: 10.1016/j.radonc.2009.06.023. Epub 2009 Jul 20.

Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation.

Abstract

BACKGROUND:

Recently, we showed that transplantation of 100-300 c-Kit(+) stem cells isolated from cultured salispheres ameliorates radiation-damage in murine salivary glands. The aim of this study is to optimize and translate these findings from mice to man.

METHODS:

Mouse and human non-malignant parotid and submandibular salivary gland tissue was collected and enzymatically digested. The remaining cell suspension was cultured according to our salisphere culture method optimized for murine salispheres. Salisphere cells were tested using 3D matrix culturing for their in vitro stem cell characteristics such as the potential to differentiate into tissue specific cell types. Several potential mouse and human salivary gland stem cells were selected using FACS.

RESULTS:

In human salivary gland, c-Kit(+) cells were only detected in excretory ducts as shown previously in mice. From both human parotid and submandibular gland cell suspensions salispheres could be grown, which when placed in 3D culture developed ductal structures and mucin-expressing acinar-like cells. Moreover, cells dispersed from primary salispheres were able to form secondary spheres in matrigel, a procedure that could be repeated for at least seven passages. Approximately 3000 c-Kit+ cells could be isolated from primary human salispheres per biopsy.

CONCLUSION:

Human salivary glands contain a similar ‘putative’ stem cell population as rodents, expressing c-kit and capable of in vitro differentiation and self-renewal. In the future, these cells may have the potential to reduce radiotherapy-induced salivary gland dysfunction in patients.
Shopping Cart