Adult Stem Cells May Help Heal Corneal Cells

Here are more studies pointing to the possibility that autologous adult stem cell can heal damaged corneal epithelial cells. This healing could help patients with chronic eye pain from neuropathy, dry eye disease, chronic viral and bacterial infections, Graft Versus Host, and Stevens Johnson Disease.

Thus far our 4 patients have felt improvement with autologous, adipose-derived stem cells, but it is likely not a cure as these cells can become damaged again over time and exposure to environmental risk factors.


 2018 May;82(5):800-809. doi: 10.1080/09168451.2018.1438167. Epub 2018 Feb 16.

Co-culture of human bone marrow mesenchymal stem cells and macrophages attenuates lipopolysaccharide-induced inflammation in human corneal epithelial cells.

Author information

a Department of Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea.
b National Institute of Food and Drug Safety Evaluation , Ministry of Food and Drug Safety , Cheongju , Republic of Korea.


Dry eye syndrome (DES) is considered as an ocular surface inflammatory disease. Previous studies have shown inflammation plays an important role in the progression and onset of DES. Co-culture of human bone marrow mesenchymal stem cells (HBMSCs) and macrophages showed immunomodulatory effects via regulation of cytokine regulation. Thus, the aim of this study was to investigate the effect of the interaction of these cells on in vitro DES model. The conditioned media (CM) from macrophages, HBMSCs, and HBMSCs + macrophages were treated to human corneal epithelial cells, which showed significant reduction in IL-1α and IL-1β expression levels in HBMSCs + macrophages group. Moreover, the IL-1 Receptor Antagonist (IL-1RA) was highly expressed in the CM from the HBMSCs + macrophages group. Wounded eyes of mice were treated with IL-1RA at 0-100 ng/mL for 16 h, the wound size was reduced. The results of this study might lead to the identification of new therapeutic targets for DES.

Scientists can now screen for stem cells that enhance corneal regrowth

July 2, 2014

Stem cells within the limbus of the human eye can now be purified with the help of an antibody.

Discovery is expected to quickly translate into improved human therapies

A Boston-based scientific collaborative, led by Harvard Stem Cell Institute (HSCI) researchers, has discovered a way to collect the best cell type for regenerating a damaged cornea—the clear membrane that covers the pupil and directs light into the back of the eye. The investigators report in the journal Nature that purified human stem cells can be used to improve long-term vision in mice. The team is now pursuing FDA-approval for the technique before moving on to clinical trials.
The study, led by co-senior investigators Natasha Frank, MD, and Markus Frank, MD, was a highly collaborative effort, with work done at Massachusetts Eye and Ear/Schepens Eye Research InstituteBoston Children’s HospitalBrigham and Women’s Hospital, and the US Department of Veterans Affairs Boston Healthcare System.
Corneal blindness is a clouding of vision that results when blood vessels grow into the cornea. It can be caused by an injury, infection, or autoimmune disease that destroys an actively regenerating population of stem cells located in an area behind the cornea, called the limbus. Limbal stem celltransplants from an uninjured eye or deceased organ donor have had promising results, but outcomes have been inconsistent.
“Previously published work on limbal epithelial cell grafts showed that when more than three percent of transplanted cells were stem cells, transplants were successful—less than three percent and the transplants were not, “said HSCI Affiliated Faculty member Natasha Frank.
“The question in the field then was whether we could enrich the limbal stem cells. But until this study there was no specific marker that could isolate these cells,” added Frank, who is a physician of the VA Boston Healthcare System and Brigham and Women’s Hospital, and a Harvard Medical Schoolassistant professor of medicine in the Division of Genetics at Brigham and Women’s Hospital.
The biological marker the researchers found is the ABCB5 protein, which is located on the surface of limbal stem cells. The team then developed an antibody that could tag limbal stem cells in a general sample of human limbal cells, making it possible to purify only the cells responsible for successful limbal cell transplants.
The researchers transplanted purified limbal stem cells from adult humans into mice with corneal blindness and checked to see if the corneas had regrown 5 weeks later, as well as 13 months later. They found that the mouse corneas looked normal, with the same thickness and protein expression as corneas in healthy mice. [Photo right.]
“I think a very exciting part of the study is that even though there is a lot of evidence that adult stem cells contribute to tissue regeneration, what we see is basically the first evidence that you can take adult stem cells and regrow the organ that’s been damaged,” Frank said.
The research team next hopes to find a way to replicate limbal stem cells so that a single donor eye can produce enough transplantable cells to help several patients. They will also be partnering with biopharmaceuticals companies to produce commercial qualities of the ABCB5 antibody for humans, and they are planning to further collaborate with co-author Victor Perez, MD, a professor of ophthalmology at the Bascom Palmer Eye Institute in Miami, to move the techniques used in the current study into clinical trials.
“This finding will now make it much easier to restore the corneal surface. It’s a very good example of basic research moving quickly to translational application,” said Bruce Ksander, PhD, an associate scientist at Schepens Eye Research Institute and co-first author on the study with postdoctoral fellow Paraskevi Kolovou, MD. 
The research was supported by a 2013 Harvard Stem Cell Institute Seed Grant, the National Institute of Neurological Disorders and Stroke, the Veterans Administration, the National Cancer Institute, the Department of Defense, the National Institutes of Health, the Corley Research Foundation, the Medical Eye Bank of Western Pennsylvania, the Howard Hughes Medical Institute and the Life Sciences Research Foundation.
Cited: Ksander, et. al., ABCB5 is a limbal stem cell gene required for corneal development and repairNature. (July 2, 2014), doi: 10.1038/nature13426
Shopping Cart