A key question is, “What is the best way to make PRP.”
The below is a good review article. Citrate is usually used to make activated PRP noting the platelets seem to work better when activated and more platelets can be extracted when using Citrate.
However, a patient of mine noted he felt better when using PRP without Citrate. He found an interesting article below (Ref 2) noting citrate can cause long term damage to epithelial cells IN VITRO. This was curious as he was the first to notice a difference. It could be he is particularly sensitive to the citrate. The article below notes that IN VIVO studies are lacking on the long term risk of citrate, but they do note they only noticed a negative effect with very concentrated citrate over a long time period.
For now, we make all our PRP with Citrate. But if we do have a patient who feels it did not help or it burns (which is very, very rare), I might consider making the PRP without citrate.
SLC
Ref 1
Stem Cells International Volume 2016, Article ID 7414036, 11 pages http://dx.doi.org/10.1155/2016/7414036
Platelet-Rich Plasma Obtained with Different Anticoagulants and Their Effect on Platelet Numbers and Mesenchymal Stromal Cells Behavior In Vitro
2Laboratório de Biologia e Tecnologia Celular, Universidade Veiga de Almeida, 20270-150 Rio de Janeiro, RJ, Brazil
3Universidade Federal Fluminense, 24033-900 Niterói, RJ, Brazil
4Centro Universitário Celso Lisboa, 20950-091 Rio de Janeiro, RJ, Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. PRP Obtaining
2.3. Hematological Analysis
2.4. Quantification of Growth Factors
2.5. Bone Marrow-Derived Mesenchymal Stromal Cell (BM-MSC) Isolation and Culture
2.6. Cell Viability Assay
2.7. Gene Expression Evaluation
2.8. Statistical Analysis
3. Results
3.1. Effect of Different Anticoagulants on Initial Platelet Counting and Recovery
3.2. TGF-β1 and VEGF Release from Platelet-Rich Plasma in Different Anticoagulants
3.3. Bone Marrow-Derived Mesenchymal Stromal Cell Culture
3.4. Modulation of Bone Marrow-Derived Mesenchymal Stromal Cell Gene Expression by Platelet-Rich Plasma Culture
4. Discussion
5. Conclusion
Competing Interests
Acknowledgments
References
- R. E. Marx, “Platelet-rich plasma (PRP): what is PRP and what is not PRP?” Implant Dentistry, vol. 10, no. 4, pp. 225–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
- G. Filardo, E. Kon, R. Buda et al., “Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 19, no. 4, pp. 528–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
- M. Sánchez, J. Azofra, E. Anitua et al., “Plasma rich in growth factors to treat an articular cartilage avulsion: a case report,” Medicine and Science in Sports and Exercise, vol. 35, no. 10, pp. 1648–1652, 2003. View at Publisher · View at Google Scholar · View at Scopus
- E. Kon, G. Filardo, B. Di Matteo, and M. Marcacci, “PRP for the treatment of cartilage pathology,” The Open Orthopaedics Journal, vol. 7, pp. 120–128, 2013. View at Google Scholar
- D. W. Taylor, M. Petrera, M. Hendry, and J. S. Theodoropoulos, “A systematic review of the use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament injuries,” Clinical Journal of Sport Medicine, vol. 21, no. 4, pp. 344–352, 2011. View at Publisher · View at Google Scholar · View at Scopus
- Y. Kajikawa, T. Morihara, H. Sakamoto et al., “Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing,” Journal of Cellular Physiology, vol. 215, no. 3, pp. 837–845, 2008. View at Publisher · View at Google Scholar · View at Scopus
- T. M. McCarrel, T. Minas, and L. A. Fortier, “Optimization of leukocyte concentration in platelet-rich plasma for the treatment of tendinopathy,” The Journal of Bone & Joint Surgery—American Volume, vol. 94, no. 19, article e143, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
- G. Reurink, G. J. Goudswaard, M. H. Moen et al., “Platelet-rich plasma injections in acute muscle injury,” The New England Journal of Medicine, vol. 370, no. 26, pp. 2546–2547, 2014. View at Publisher · View at Google Scholar · View at Scopus
- J. W. Hammond, R. Y. Hinton, L. A. Curl, J. M. Muriel, and R. M. Lovering, “Use of autologous platelet-rich plasma to treat muscle strain injuries,” The American Journal of Sports Medicine, vol. 37, no. 6, pp. 1135–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus
- R. E. Marx, E. R. Carlson, R. M. Eichstaedt, S. R. Schimmele, J. E. Strauss, and K. R. Georgeff, “Platelet-rich plasma: growth factor enhancement for bone grafts,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 85, no. 6, pp. 638–646, 1998. View at Publisher · View at Google Scholar · View at Scopus
- G. Weibrich, T. Hansen, W. Kleis, R. Buch, and W. E. Hitzler, “Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration,” Bone, vol. 34, no. 4, pp. 665–671, 2004. View at Publisher · View at Google Scholar · View at Scopus
- A. D. Mazzocca, M. B. R. McCarthy, D. M. Chowaniec et al., “The positive effects of different platelet-rich plasma methods on human muscle, bone, and tendon cells,” American Journal of Sports Medicine, vol. 40, no. 8, pp. 1742–1749, 2012. View at Publisher · View at Google Scholar · View at Scopus
- K. Schallmoser, C. Bartmann, E. Rohde et al., “Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells,” Transfusion, vol. 47, no. 8, pp. 1436–1446, 2007. View at Publisher · View at Google Scholar · View at Scopus
- E. Anitua, M. Sánchez, M. M. Zalduendo et al., “Fibroblastic response to treatment with different preparations rich in growth factors,” Cell Proliferation, vol. 42, no. 2, pp. 162–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
- V. K. Gonzales, E. L. W. de Mulder, T. de Boer et al., “Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures,” Tissue Engineering—Part C: Methods, vol. 19, no. 11, pp. 892–899, 2013. View at Publisher · View at Google Scholar · View at Scopus
- T. E. Foster, B. L. Puskas, B. R. Mandelbaum, M. B. Gerhardt, and S. A. Rodeo, “Platelet-rich plasma: from basic science to clinical applications,” American Journal of Sports Medicine, vol. 37, no. 11, pp. 2259–2272, 2009. View at Publisher · View at Google Scholar · View at Scopus
- M. Pakyari, A. Farrokhi, M. K. Maharlooei, and A. Ghahary, “Critical role of transforming growth factor beta in different phases of wound healing,” Advances in Wound Care, vol. 2, no. 5, pp. 215–224, 2013. View at Publisher · View at Google Scholar
- D. I. R. Holmes and I. Zachary, “The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease,” Genome Biology, vol. 6, no. 2, article 209, 2005. View at Publisher · View at Google Scholar · View at Scopus
- J. Donovan, D. Abraham, and J. Norman, “Platelet-derived growth factor signaling in mesenchymal cells,” Frontiers in Bioscience, vol. 18, no. 1, pp. 106–119, 2013. View at Publisher · View at Google Scholar · View at Scopus
- E. Lopez-Vidriero, K. A. Goulding, D. A. Simon, D. H. Johnson, and M. Sanchez, “Poor standardization in platelet-rich therapies hampers advancement,” Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 26, no. 6, pp. 724–725, 2010. View at Publisher · View at Google Scholar
- T. Wright-Carpenter, P. Klein, P. Schäferhoff, H. J. Appell, L. M. Mir, and P. Wehling, “Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains,” International Journal of Sports Medicine, vol. 25, no. 8, pp. 588–593, 2004. View at Publisher · View at Google Scholar · View at Scopus
- Z. R. Mrowiec, L. Oleksowicz, J. P. Dutcher, M. De Leon-Fernandez, P. Lalezari, and E. G. Puszkin, “A novel technique for preparing improved puffy coat platelet concentrates,” Blood Cells, Molecules, and Diseases, vol. 21, no. 1, pp. 25–33, 1995. View at Publisher · View at Google Scholar · View at Scopus
- S. Ferizhandy Ali, “Platelet activation in stored platelet concentrates: comparision of two methods preparation,” Journal of Blood Disorders & Transfusion, vol. 2, no. 2, pp. 2–4, 2011. View at Publisher · View at Google Scholar
- G. Bernardini, F. Chellini, B. Frediani, A. Spreafico, and A. Santucci, “Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance,” Journal of Biosciences, vol. 40, no. 1, pp. 61–69, 2015. View at Publisher · View at Google Scholar · View at Scopus
- E. Kon, R. Buda, G. Filardo et al., “Platelet-rich plasma: intra-articular knee injections produced favorable results on degenerative cartilage lesions,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 18, no. 4, pp. 472–479, 2010. View at Publisher · View at Google Scholar · View at Scopus
- E. Anitua and G. Orive, “Short implants in maxillae and mandibles: a retrospective study with 1 to 8 years of follow-up,” Journal of Periodontology, vol. 81, no. 6, pp. 819–826, 2010. View at Publisher · View at Google Scholar · View at Scopus
- E. Anitua, B. Pelacho, R. Prado et al., “Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia,” Journal of Controlled Release, vol. 202, pp. 31–39, 2015. View at Publisher · View at Google Scholar
- J.-C. Lee, H. J. Min, H. J. Park, S. Lee, S. C. Seong, and M. C. Lee, “Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model,” Arthroscopy, vol. 29, no. 6, pp. 1034–1046, 2013. View at Publisher · View at Google Scholar · View at Scopus
- M. Pihut, M. Szuta, E. Ferendiuk, and D. Zeńczak-Więckiewicz, “Evaluation of pain regression in patients with temporomandibular dysfunction treated by intra-articular platelet-rich plasma injections: a preliminary report,” BioMed Research International, vol. 2014, Article ID 132369, 7 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
- N. Kakudo, N. Morimoto, S. Kushida, T. Ogawa, and K. Kusumoto, “Platelet-rich plasma releasate promotes angiogenesis in vitro and in vivo,” Medical Molecular Morphology, vol. 47, no. 2, pp. 83–89, 2014. View at Publisher · View at Google Scholar
- H.-R. Lee, K. M. Park, Y. K. Joung, K. D. Park, and S. H. Do, “Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2,” Journal of Controlled Release, vol. 159, no. 3, pp. 332–337, 2012. View at Publisher · View at Google Scholar · View at Scopus
- X. Xie, Y. Wang, C. Zhao et al., “Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration,” Biomaterials, vol. 33, no. 29, pp. 7008–7018, 2012. View at Publisher · View at Google Scholar · View at Scopus
- A. Mishra, K. Harmon, J. Woodall, and A. Vieira, “Sports medicine applications of platelet rich plasma,” Current Pharmaceutical Biotechnology, vol. 13, no. 7, pp. 1185–1195, 2012. View at Publisher · View at Google Scholar · View at Scopus
- O. Bausset, L. Giraudo, J. Veran et al., “Formulation and storage of platelet-rich plasma homemade product,” BioResearch Open Access, vol. 1, no. 3, pp. 115–123, 2012. View at Publisher · View at Google Scholar
- Y. Yamada, M. Ueda, T. Naiki, M. Takahashi, K.-I. Hata, and T. Nagasaka, “Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration,” Tissue Engineering, vol. 10, no. 5-6, pp. 955–964, 2004. View at Publisher · View at Google Scholar · View at Scopus
- H. Hemeda, J. Kalz, G. Walenda, M. Lohmann, and W. Wagner, “Heparin concentration is critical for cell culture with human platelet lysate,” Cytotherapy, vol. 15, no. 9, pp. 1174–1181, 2013. View at Publisher · View at Google Scholar · View at Scopus
- J. Araki, M. Jona, H. Eto et al., “Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen,” Tissue Engineering—Part C: Methods, vol. 18, no. 3, pp. 176–185, 2012. View at Publisher · View at Google Scholar · View at Scopus
- R. A. R. Bowen and A. T. Remaley, “Interferences from blood collection tube components on clinical chemistry assays,” Biochemia Medica, vol. 24, no. 1, pp. 31–44, 2014. View at Publisher · View at Google Scholar · View at Scopus
- P. R. Amable, R. B. V. Carias, M. V. T. Teixeira et al., “Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors,” Stem Cell Research and Therapy, vol. 4, no. 3, article 67, 2013. View at Publisher · View at Google Scholar · View at Scopus
- K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
- Y. Zhu, M. Yuan, H. Y. Meng et al., “Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review,” Osteoarthritis and Cartilage, vol. 21, no. 11, pp. 1627–1637, 2013. View at Publisher · View at Google Scholar · View at Scopus
- E. Anitua, R. Prado, and G. Orive, “Endogenous morphogens and fibrin bioscaffolds for stem cell therapeutics,” Trends in Biotechnology, vol. 31, no. 6, pp. 364–374, 2013. View at Publisher · View at Google Scholar · View at Scopus
- M. Betsch, J. Schneppendahl, S. Thuns et al., “Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model,” PLoS ONE, vol. 8, no. 8, article e71602, 2013. View at Publisher · View at Google Scholar · View at Scopus
- H. Li, A. Usas, M. Poddar et al., “Platelet-rich plasma promotes the proliferation of human muscle derived progenitor cells and maintains their stemness,” PLoS ONE, vol. 8, no. 6, Article ID e64923, 2013. View at Publisher · View at Google Scholar · View at Scopus
- E. Castrén, T. Sillat, S. Oja et al., “Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimensional cultures without animal serum,” Stem Cell Research & Therapy, vol. 6, no. 1, article 167, pp. 1–13, 2015. View at Publisher · View at Google Scholar · View at Scopus
- R. L. McShine, P. C. Das, C. T. Smit Sibinga, and B. Brozovic, “Differences between the effects of EDTA and citrate anticoagulants on platelet count and mean platelet volume,” Clinical and Laboratory Haematology, vol. 12, no. 3, pp. 277–285, 1990. View at Google Scholar · View at Scopus
- R. L. McShine, P. C. Das, C. T. S. Sibinga, and B. Brozović, “Effect of EDTA on platelet count and other platelet parameters in blood and blood components collected with CPDA-1,” Vox Sanguinis, vol. 61, no. 2, pp. 84–89, 1991. View at Publisher · View at Google Scholar · View at Scopus
- J. Araki, M. Jona, H. Eto et al., “Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen,” Tissue Engineering Part C: Methods, vol. 18, no. 3, pp. 176–185, 2012. View at Publisher · View at Google Scholar · View at Scopus
- J. H. Ladenson, L. M. B. Tsai, J. M. Michael, G. Kessler, and J. H. Joist, “Serum versus heparinized plasma for eighteen common chemistry tests: is serum the appropriate specimen?” American Journal of Clinical Pathology, vol. 62, no. 4, pp. 545–552, 1974. View at Publisher · View at Google Scholar · View at Scopus
- P. M. W. Bath and R. J. Butterworth, “Platelet size: measurement, physiology and vascular disease,” Blood Coagulation and Fibrinolysis, vol. 7, no. 2, pp. 157–161, 1996. View at Publisher · View at Google Scholar · View at Scopus
- Y. Park, N. Schoene, and W. Harris, “Mean platelet volume as an indicator of platelet activation: methodological issues,” Platelets, vol. 13, no. 5-6, pp. 301–306, 2002. View at Publisher · View at Google Scholar · View at Scopus
- R. H. Aster, “Blood platelet kinetics and platelet transfusion,” The Journal of Clinical Investigation, vol. 123, no. 11, pp. 4564–4565, 2013. View at Publisher · View at Google Scholar · View at Scopus
- C. Oviedo and J. Rodríguez, “EDTA: the chelating agent under environmental scrutiny,” Quimica Nova, vol. 26, no. 6, pp. 901–905, 2003. View at Publisher · View at Google Scholar · View at Scopus
- M. Fukaya and A. Ito, “A new economic method for preparing platelet-rich plasma,” Plastic and Reconstructive Surgery—Global Open, vol. 2, no. 6, article e162, 2014. View at Publisher · View at Google Scholar
- H. Lei, L. Gui, and R. Xiao, “The effect of anticoagulants on the quality and biological efficacy of platelet-rich plasma,” Clinical Biochemistry, vol. 42, no. 13-14, pp. 1452–1460, 2009. View at Publisher · View at Google Scholar · View at Scopus
- P. Pignatelli, F. M. Pulcinelli, F. Ciatti et al., “Acid Citrate Dextrose (ACD) formula A as a new anticoagulant in the measurement of in vitro platelet aggregation,” Journal of Clinical Laboratory Analysis, vol. 9, no. 2, pp. 138–140, 1995. View at Publisher · View at Google Scholar · View at Scopus
- P. Pignatelli, F. M. Pulcinelli, F. Ciatti, M. Pesciotti, P. Ferroni, and P. P. Gazzaniga, “Effects of storage on in vitro platelet responses: comparison of ACD and Na citrate anticoagulated samples,” Journal of Clinical Laboratory Analysis, vol. 10, no. 3, pp. 134–139, 1996. View at Publisher · View at Google Scholar · View at Scopus
- C. E. A. Jochems, J. B. F. van der Valk, F. R. Stafleu, and V. Baumans, “The use of fetal bovine serum: ethical or scientific problem?” Alternatives to Laboratory Animals, vol. 30, no. 2, pp. 219–227, 2002. View at Google Scholar · View at Scopus
- G. Gstraunthaler, “Alternatives to the use of fetal bovine serum: serum-free cell culture,” ALTEX: Alternativen zu Tierexperimenten, vol. 20, no. 4, pp. 275–281, 2003. View at Google Scholar · View at Scopus
- E. Cordeiro-Spinetti, W. de Mello, L. S. Trindade, D. D. Taub, R. S. Taichman, and A. Balduino, “Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation,” Frontiers in Cell and Developmental Biology, vol. 2, pp. 1–8, 2014. View at Publisher · View at Google Scholar
- B. L. Eppley, J. E. Woodell, and J. Higgins, “Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing,” Plastic and Reconstructive Surgery, vol. 114, no. 6, pp. 1502–1508, 2004. View at Publisher · View at Google Scholar · View at Scopus
- G. Weibrich, W. K. G. Kleis, G. Hafner, and W. E. Hitzler, “Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count,” Journal of Cranio-Maxillofacial Surgery, vol. 30, no. 2, pp. 97–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
- E. A. Sundman, B. J. Cole, and L. A. Fortier, “Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma,” American Journal of Sports Medicine, vol. 39, no. 10, pp. 2135–2140, 2011. View at Publisher · View at Google Scholar · View at Scopus
- H. El-Sharkawy, A. Kantarci, J. Deady et al., “Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties,” Journal of Periodontology, vol. 78, no. 4, pp. 661–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
- T. N. Castillo, M. A. Pouliot, Hyeon Joo Kim, and J. L. Dragoo, “Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems,” The American Journal of Sports Medicine, vol. 39, no. 2, pp. 266–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
- E. Rubio-Azpeitia and I. Andia, “Partnership between platelet-rich plasma and mesenchymal stem cells: in vitro experience,” Muscles, Ligaments and Tendons Journal, vol. 4, no. 1, pp. 52–62, 2014. View at Google Scholar · View at Scopus
- D. Baksh, L. Song, and R. S. Tuan, “Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy,” Journal of Cellular and Molecular Medicine, vol. 8, no. 3, pp. 301–316, 2004. View at Publisher · View at Google Scholar · View at Scopus
- J. Zhang and J. H.-C. Wang, “Human tendon stem cells better maintain their stemness in hypoxic culture conditions,” PLoS ONE, vol. 8, no. 4, Article ID e61424, 2013. View at Publisher · View at Google Scholar · View at Scopus
- H. J. Sung, S. C. Hong, J. H. Yoo et al., “Stemness evaluation of mesenchymal stem cells from placentas according to developmental stage: comparison to those from adult bone marrow,” Journal of Korean Medical Science, vol. 25, no. 10, pp. 1418–1426, 2010. View at Publisher · View at Google Scholar · View at Scopus
- K. Akeda, H. S. An, M. Okuma et al., “Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis,” Osteoarthritis and Cartilage, vol. 14, no. 12, pp. 1272–1280, 2006. View at Publisher · View at Google Scholar · View at Scopus
- A. Spreafico, F. Chellini, B. Frediani et al., “Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes,” Journal of Cellular Biochemistry, vol. 108, no. 5, pp. 1153–1165, 2009. View at Publisher · View at Google Scholar · View at Scopus
- C. Gaissmaier, J. Fritz, T. Krackhardt, I. Flesch, W. K. Aicher, and N. Ashammakhi, “Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures,” Biomaterials, vol. 26, no. 14, pp. 1953–1960, 2005. View at Publisher · View at Google Scholar · View at Scopus
- C. Kaps, A. Loch, A. Haisch et al., “Human platelet supernatant promotes proliferation but not differentiation of articular chondrocytes,” Medical and Biological Engineering and Computing, vol. 40, no. 4, pp. 485–490, 2002. View at Publisher · View at Google Scholar · View at Scopus
- R. J. do Amaral, A. Matsiko, M. R. Tomazette et al., “Platelet-rich plasma releasate differently stimulates cellular commitment toward the chondrogenic lineage according to concentration,” Journal of Tissue Engineering, vol. 6, 2015. View at Publisher · View at Google Scholar
REF 2
In summary, both phosphate and citrate buffers revealed significant cytotoxic effects at high concentrations and longer incubation times in ocular epithelial monolayers. Transferring the results of this study to a clinical setting requires thorough in vivo preclinical data, as topical application involves factors such as blinking and tear production that need to be considered. Thus, to translate these finding to humans, further experiments with stratified cells in vitro and preclinical in vivo studies in animals are planned to discern the actual effects of the buffer concentration in eye drops on the ocular surface. This study highlights the relevance of maintaining ocular homeostasis to ensure ocular surface health.
Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal–Limbal and Human Conjunctival Epithelial Cells
Associated Data
TABLE 1.
MATERIALS AND METHODS
Cell Culture
Preparation of Buffer Solutions
Cytotoxicity Assay
Calculations Performed
Microscopy
Statistics
RESULTS
Viability of HCLE Cells Is Not Significantly Affected by the Choice of Buffer in Low Concentrations and Short Incubation
HCjE Cell Viability Is Significantly Affected by Citrate Buffer at High Concentrations and Longer Incubation Times
HCLE and HCjE Cell Morphology Is Altered at Higher Buffer Concentrations and Longer Incubation Times
DISCUSSION
Footnotes
REFERENCES
Ref 3
More References: