3. Flow cytometry is a way to generally isolate stem cells but it is not perfect.
Stem cell marker
Stem cell marker names[edit]
- AA4[3]
- AA4.1[4]
- P-gp (CD243)[5]
- ABCB5[6]
- ABCG2 (CDw338)[7]
- ALDH[8]
- alkaline phosphatase[9]
- alpha6-integrin[10]
- Anti-WNT2B monoclonal antibody[11]
- antithrombin III (AT)[12]
- asialo GM1[13]
- Bcl-2[14]
- Beta-galactosidase (β-gal) of ROSA26 mice[15]
- beta1-integrin[10]
- bromodeoxyuridine[16]
- c-kit (CD117)[17]
- c-Met[18]
- C1qR(p)[19]
- END (CD105)[20]
- PROM1 (CD133) [21][22][23]
- ALCAM (CD166)[20]
- ITGB1 (CD29)[24]
- TNFRSF8 (CD30)[25]
- PECAM-1 (CD31)[26]
- Siglec-3 (CD33)[27]
- CD34[28]
- CD44[24]
- NCAM (CD56)[29]
- CD73[24]
- CD9[30]
- CD90[31]
- CDCP1[32]
- Circulating anticoagulants protein C (PC)[12]
- CK19[33]
- CLV3[34]
- cyclic CMP[35]
- ECMA-7[36]
- EDR1[37]
- EEC[38]
- FGF-4[39]
- Flk-2[40]
- Flk1(+)[41]
- Flt3/Flk2[42]
- FMS (CD115)[43]
- FORSE-1[16]
- G alpha16[44]
- GDF3[37]
- GFPM[45]
- Giant granules of beige C57B1/6 (bg) mice[46]
- Gli2[47]
- Gli3[47]
- glial fibrillary acidic protein[16]
- glycoprotein IB[48]
- GSTA1[49]
- HAS2 gene expression[50]
- Her5[51]
- hMYADM[52]
- HSA[42]
- hsp25[53]
- Id2[54]
- IL-3Ralpha[55]
- Integrins[56]
- interleukin-3 receptor alpha chain[57]
- Iron oxide nanoparticles[58]
- KDR[59]
- Keratin 15 (aka. CK15, Cytokeratin 15) [33][60][61][62]
- Keratin 19 (aka. CK19, Cytokeratin 19, K19) [63][64][65]
- Kit[4]
- L-selectin (CD62L)[66]
- Lamin A/C[67]
- Lewis X antigen (Le(X))[68]
- LeX[69]
- Lgr5[70]
- Lrp4[71]
- MCM2[72]
- MCSP[73]
- Metallothionein (MT) crypt-restricted immunopositivity indices (MTCRII)[74]
- monosomy 7[75]
- Mouse orthologue of ARX[76]
- MRP4[77]
- Msi-1[78]
- Musashi[78]
- Musashi-1[79]
- Mutant BCRP[80]
- nestin[81]
- neurofilament microtubule-associated protein 2[82]
- neuron-glial antigen 2 (NG2)[83]
- notch 1[84]
- nrp-1[85]
- Nucleostemin[86]
- OC.3[87]
- Oct-4[88]
- OST-PTP[89]
- P-gp/MDR1[90]
- p21[65]
- p63[91]
- p75[92]
- PCLP[93]
- PCNA[16]
- PECAM[7]
- PgP-1[42]
- phosphorylating-p38[94]
- Podocalyxin[95]
- procalcitonin (PCT)[96]
- PSCs[97]
- pSV2gpt[98]
- PTPRC[24]
- purified LRC[99]
- Rat liver fatty acid-binding protein/human growth hormone transgenes (Fabpl/hGH)[100]
- RC1 antigen[101]
- Rex-1[102]
- Sca-1[103]
- SCF[104]
- Sialyl-lactotetra[105]
- Side Population (SP)[106]
- SOX10[92]
- SOX2[107]
- SOX9[108]
- SP phenotype[109]
- SSEA-1[110]
- SSEA-3[111]
- SSEA-4[112]
- Stat3[113]
- Stat5[114]
- Stella[37]
- Stra8[115]
- Stro-1[116]
- Tartrate-resistant acid phosphatase (TRAcP)[117]
- TdT[118]
- telomerase reverse transcriptase[112]
- electrophoretic pattern of hemoglobin[119]
- Thrombomucin[120]
- Thy-1[121]
- Tra-1-60[122]
- TWIST1[123]
- VEGFR-2[124]
- vimentin[125]
- X-Smoothened[47]
- XKrk1[126]
- Zac1[16]
References[edit]
- ^ “Appendix E: Stem Cell Markers”. Stem Cell Information. Bethesda, Maryland: National Institutes of Health. 17 June 2001. Retrieved 23 July 2009.
- ^ Trifan M, Perez-Iratxeta C, Andrade-Navarro MA, Ionescu D (July 13–16, 2009). “Text Mining and Semantic Search with a Predicate Argument Structure Database”. International Conference on Bioinformatics & Computational Biology, BIOCOMP 2009, Las Vegas Nevada, USA, 2 Volumes.
- ^ Petrenko O, Beavis A, Klaine M, Kittappa R, Godin I, Lemischka IR (June 1999). “The molecular characterization of the fetal stem cell marker AA4”. Immunity. 10 (6): 691–700. doi:10.1016/S1074-7613(00)80068-0. PMID 10403644.
- ^ ab Taoudi S, Morrison AM, Inoue H, Gribi R, Ure J, Medvinsky A (September 2005). “Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver”. Development. 132(18): 4179–91. doi:10.1242/dev.01974. PMID 16107475.
- ^ Islam MO, Kanemura Y, Tajria J, et al. (July 2005). “Characterization of ABC transporter ABCB1 expressed in human neural stem/progenitor cells”. FEBS Letters. 579 (17): 3473–80. doi:10.1016/j.febslet.2005.05.019. PMID 15950972.
- ^ Frank NY, Margaryan A, Huang Y, et al. (May 2005). “ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma”. Cancer Research. 65 (10): 4320–33. doi:10.1158/0008-5472.CAN-04-3327. PMID 15899824.
- ^ ab Bernardo AS, Barrow J, Hay CW, et al. (July 2006). “Presence of endocrine and exocrine markers in EGFP-positive cells from the developing pancreas of a nestin/EGFP mouse”. Molecular and Cellular Endocrinology. 253 (1–2): 14–21. doi:10.1016/j.mce.2006.03.003. PMID 16698177.
- ^ Chute JP, Muramoto GG, Whitesides J, et al. (August 2006). “Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells”. Proceedings of the National Academy of Sciences of the United States of America. 103 (31): 11707–12. doi:10.1073/pnas.0603806103. PMC 1544234 . PMID 16857736.
- ^ Nagafuchi S, Katsuta H, Kogawa K, et al. (July 1999). “Establishment of an embryonic stem (ES) cell line derived from a non-obese diabetic (NOD) mouse: in vivo differentiation into lymphocytes and potential for germ line transmission”. FEBS Letters. 455 (1–2): 101–4. doi:10.1016/S0014-5793(99)00801-7. PMID 10428481.
- ^ ab Shinohara T, Avarbock MR, Brinster RL (May 1999). “β1- and α6-integrin are surface markers on mouse spermatogonial stem cells”. Proceedings of the National Academy of Sciences of the United States of America. 96 (10): 5504–9. doi:10.1073/pnas.96.10.5504. PMC 21889 . PMID 10318913.
- ^ Katoh M (December 2005). “WNT2B: comparative integromics and clinical applications (Review)”. International Journal of Molecular Medicine. 16 (6): 1103–8. doi:10.3892/ijmm.16.6.1103. PMID 16273293.
- ^ ab Gordon B, Haire W, Ruby E, et al. (March 1997). “Factors predicting morbidity following hematopoietic stem cell transplantation”. Bone Marrow Transplantation. 19 (5): 497–501. doi:10.1038/sj.bmt.1700684. PMID 9052918.
- ^ Harris MT, Schwarting GA, Stout RD (September 1981). “Selective expression of asialo GM1 on maturational subsets of lymphocytes in normal and athymic mice”. Thymus. 3 (3): 153–67. PMID 6171918.
- ^ Polakowska RR, Piacentini M, Bartlett R, Goldsmith LA, Haake AR (March 1994). “Apoptosis in human skin development: morphogenesis, periderm, and stem cells”. Developmental Dynamics. 199 (3): 176–88. doi:10.1002/aja.1001990303. PMID 7517223.
- ^ Asari S, Okada S, Ohkubo Y, et al. (August 2004). “Beta-galactosidase of ROSA26 mice is a useful marker for detecting the definitive erythropoiesis after stem cell transplantation”. Transplantation. 78 (4): 516–23. doi:10.1097/01.TP.0000128854.20831.6F. PMID 15446309.
- ^ ab c d e Valente T, Junyent F, Auladell C (June 2005). “Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: differential phenotype of the Zac1-expressing cells during development”. Developmental Dynamics. 233 (2): 667–79. doi:10.1002/dvdy.20373. PMID 15844099.
- ^ Raisky O, Nykänen AI, Krebs R, et al. (April 2007). “VEGFR-1 and -2 regulate inflammation, myocardial angiogenesis, and arteriosclerosis in chronically rejecting cardiac allografts”. Arteriosclerosis, Thrombosis, and Vascular Biology. 27 (4): 819–25. doi:10.1161/01.ATV.0000260001.55955.6c. PMID 17290032.
- ^ Suzuki A, Zheng YW, Fukao K, Nakauchi H, Taniguchi H (2004). “Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver”. Hepato-gastroenterology. 51 (56): 423–6. PMID 15086173.
- ^ Danet GH, Luongo JL, Butler G, et al. (August 2002). “C1qRp defines a new human stem cell population with hematopoietic and hepatic potential”. Proceedings of the National Academy of Sciences of the United States of America. 99 (16): 10441–5. doi:10.1073/pnas.162104799. PMC 124933 . PMID 12140365.
- ^ ab Nagatomo K, Komaki M, Sekiya I, et al. (August 2006). “Stem cell properties of human periodontal ligament cells”. Journal of Periodontal Research. 41 (4): 303–10. doi:10.1111/j.1600-0765.2006.00870.x. PMID 16827724.
- ^ Peichev M, Naiyer AJ, Pereira D, et al. (1 February 2000). “Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors”. Blood. 95 (3): 952–8. PMID 10648408.
- ^ Zhou L, Wei X, Cheng L, Tian J, Jiang JJ (March 2007). “CD133, one of the markers of cancer stem cells in Hep-2 cell line”. The Laryngoscope. 117 (3): 455–60. doi:10.1097/01.mlg.0000251586.15299.35. PMID 17334305.
- ^ Kania G, Corbeil D, Fuchs J, et al. (2005). “Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors”. Stem Cells. 23 (6): 791–804. doi:10.1634/stemcells.2004-0232. PMID 15917475.
- ^ ab c d Herrera MB, Bruno S, Buttiglieri S, et al. (December 2006). “Isolation and characterization of a stem cell population from adult human liver”. Stem Cells. 24 (12): 2840–50. doi:10.1634/stemcells.2006-0114. PMID 16945998.
- ^ Pera MF, Herszfeld D (1998). “Differentiation of human pluripotent teratocarcinoma stem cells induced by bone morphogenetic protein-2”. Reproduction, Fertility, and Development. 10 (7–8): 551–5. doi:10.1071/RD98097. PMID 10612460.
- ^ Miranville A, Heeschen C, Sengenès C, Curat CA, Busse R, Bouloumié A (July 2004). “Improvement of postnatal neovascularization by human adipose tissue-derived stem cells”. Circulation. 110 (3): 349–55. doi:10.1161/01.CIR.0000135466.16823.D0. PMID 15238461.
- ^ Blakolmer K, Jaskiewicz K, Dunsford HA, Robson SC (June 1995). “Hematopoietic stem cell markers are expressed by ductal plate and bile duct cells in developing human liver”. Hepatology. 21 (6): 1510–6. doi:10.1002/hep.1840210606. PMID 7539394.
- ^ Ning H, Lin G, Lue TF, Lin CS (December 2006). “Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells”. Differentiation. 74 (9–10): 510–8. doi:10.1111/j.1432-0436.2006.00081.x. PMID 17177848.
- ^ Van Den Heuvel MC, Slooff MJ, Visser L, et al. (June 2001). “Expression of anti-OV6 antibody and anti-N-CAM antibody along the biliary line of normal and diseased human livers”. Hepatology. 33 (6): 1387–93. doi:10.1053/jhep.2001.24453. PMID 11391527.
- ^ Kanatsu-Shinohara M, Toyokuni S, Shinohara T (January 2004). “CD9 is a surface marker on mouse and rat male germline stem cells”. Biology of Reproduction. 70 (1): 70–5. doi:10.1095/biolreprod.103.020867. PMID 12954725.
- ^ Okumoto K, Saito T, Hattori E, et al. (May 2003). “Differentiation of bone marrow cells into cells that express liver-specific genes in vitro: implication of the Notch signals in differentiation”. Biochemical and Biophysical Research Communications. 304 (4): 691–5. doi:10.1016/S0006-291X(03)00637-5. PMID 12727209.
- ^ Kimura H, Morii E, Ikeda JI, et al. (September 2006). “Role of DNA methylation for expression of novel stem cell marker CDCP1 in hematopoietic cells”. Leukemia. 20 (9): 1551–6. doi:10.1038/sj.leu.2404312. PMID 16926850.
- ^ ab Regauer S (May 2006). “Extramammary Paget’s disease–a proliferation of adnexal origin?”. Histopathology. 48 (6): 723–9. doi:10.1111/j.1365-2559.2006.02405.x. PMID 16681689.
- ^ Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (March 2000). “The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes”. Cell. 100 (6): 635–44. doi:10.1016/S0092-8674(00)80700-X. PMID 10761929.
- ^ Scavennec J, Carcassonne Y, Gastaut JA, Blanc A, Cailla HL (1 August 1981). “Relationship between the levels of cyclic cytidine 3′:5′-monophosphate, cyclic guanosine 3′:5′-monophosphate, and cyclic adenosine 3′:5′-monophosphate in urines and leukocytes and the type of human leukemias”. Cancer Research. 41 (8): 3222–7. PMID 6265079.
- ^ Boulter CA, Wagner EF (March 1988). “The effects of v-src expression on the differentiation of embryonal carcinoma cells”. Oncogene. 2 (3): 207–14. PMID 3127777.
- ^ ab c Giuliano CJ, Kerley-Hamilton JS, Bee T, et al. (October 2005). “Retinoic acid represses a cassette of candidate pluripotency chromosome 12p genes during induced loss of human embryonal carcinoma tumorigenicity”. Biochimica et Biophysica Acta. 1731 (1): 48–56. doi:10.1016/j.bbaexp.2005.08.006. PMID 16168501.
- ^ Reid CD (June 1987). “The significance of endogenous erythroid colonies (EEC) in haematological disorders”. Blood Reviews. 1 (2): 133–40. doi:10.1016/0268-960X(87)90008-7. PMID 3332094.
- ^ Lane MA, Chen AC, Roman SD, Derguini F, Gudas LJ (November 1999). “Removal of LIF (leukemia inhibitory factor) results in increased vitamin A (retinol) metabolism to 4-oxoretinol in embryonic stem cells”. Proceedings of the National Academy of Sciences of the United States of America. 96 (23): 13524–9. doi:10.1073/pnas.96.23.13524. PMC 23981 . PMID 10557354.
- ^ Christensen JL, Weissman IL (December 2001). “Flk-2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-term stem cells”. Proceedings of the National Academy of Sciences of the United States of America. 98 (25): 14541–6. doi:10.1073/pnas.261562798. PMC 64718 . PMID 11724967.
- ^ Hu Y, Zhang Z, Torsney E, et al. (May 2004). “Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice”. The Journal of Clinical Investigation. 113 (9): 1258–65. doi:10.1172/JCI19628. PMC 398426 . PMID 15124016.
- ^ ab c Anzai H, Nagayoshi M, Obata M, Ikawa Y, Atsumi T (February 1999). “Self-renewal and differentiation of a basic fibroblast growth factor-dependent multipotent hematopoietic cell line derived from embryonic stem cells”. Development, Growth & Differentiation. 41 (1): 51–8. doi:10.1046/j.1440-169x.1999.00412.x. PMID 10445502.
- ^ Rappold I, Ziegler BL, Köhler I, et al. (15 July 1997). “Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase”. Blood. 90 (1): 111–25. PMID 9207445.
- ^ Pfeilstöcker M, Karlic H, Paukovits J, et al. (April 1999). “In vivo and in vitro effects of cytokines and the hemoregulatory peptide dimer (pEEDCK)2 (pyroGlu-Glu-Asp-Cys-Lys)2 on G alpha16-positive hematopoiesis”. Leukemia. 13 (4): 590–4. doi:10.1038/sj/leu/2401377. PMID 10214866.
- ^ Kume A, Hashiyama M, Suda T, Ozawa K (1999). “Green fluorescent protein as a selectable marker of retrovirally transduced hematopoietic progenitors”. Stem Cells. 17 (4): 226–32. doi:10.1002/stem.170226. PMID 10437986.
- ^ Sonoda T, Hayashi C, Seike H, et al. (February 1985). “Extensive proliferation of subsequently injected marrow cells in parental-to-F1 hematopoietic chimeras that restored normal stem cell concentration after initial transplantation”. Experimental Hematology. 13 (2): 143–50. PMID 2857651.
- ^ ab c Perron M, Boy S, Amato MA, et al. (April 2003). “A novel function for Hedgehog signalling in retinal pigment epithelium differentiation”. Development. 130 (8): 1565–77. doi:10.1242/dev.00391. PMID 12620982.
- ^ Tschöpe D, Langer E, Schauseil S, Rösen P, Kaufmann L, Gries FA (February 1989). “Increased platelet volume–sign of impaired thrombopoiesis in diabetes mellitus”. Klinische Wochenschrift. 67(4): 253–9. doi:10.1007/BF01717328. PMID 2927060.
- ^ Czerwinski M, Kiem HP, Slattery JT (March 1997). “Human CD34+ cells do not express glutathione S-transferases alpha”. Gene Therapy. 4 (3): 268–70. doi:10.1038/sj.gt.3300381. PMID 9135742.
- ^ Grskovic B, Pollaschek C, Mueller MM, Stuhlmeier KM (June 2006). “Expression of hyaluronan synthase genes in umbilical cord blood stem/progenitor cells”. Biochimica et Biophysica Acta. 1760 (6): 890–5. doi:10.1016/j.bbagen.2006.02.002. PMID 16564133.
- ^ Chapouton P, Adolf B, Leucht C, et al. (November 2006). “her5 expression reveals a pool of neural stem cells in the adult zebrafish midbrain”. Development. 133 (21): 4293–303. doi:10.1242/dev.02573. PMID 17038515.
- ^ Wang Q, Li N, Wang X, et al. (January 2007). “Membrane protein hMYADM preferentially expressed in myeloid cells is up-regulated during differentiation of stem cells and myeloid leukemia cells”. Life Sciences. 80 (5): 420–9. doi:10.1016/j.lfs.2006.09.043. PMID 17097684.
- ^ Stahl J, Wobus AM, Ihrig S, Lutsch G, Bielka H (September 1992). “The small heat shock protein hsp25 is accumulated in P19 embryonal carcinoma cells and embryonic stem cells of line BLC6 during differentiation”. Differentiation. 51 (1): 33–7. doi:10.1111/j.1432-0436.1992.tb00677.x. PMID 1451960.
- ^ Gultice AD, Selesniemi KL, Brown TL (June 2006). “Hypoxia inhibits differentiation of lineage-specific Rcho-1 trophoblast giant cells”. Biology of Reproduction. 74 (6): 1041–50. doi:10.1095/biolreprod.105.047845. PMID 16481593.
- ^ Testa U, Riccioni R, Diverio D, Rossini A, Lo Coco F, Peschle C (February 2004). “Interleukin-3 receptor in acute leukemia”. Leukemia. 18 (2): 219–26. doi:10.1038/sj.leu.2403224. PMID 14671644.
- ^ Hall PE, Lathia JD, Miller NG, Caldwell MA, ffrench-Constant C (September 2006). “Integrins are markers of human neural stem cells”. Stem Cells. 24 (9): 2078–84. doi:10.1634/stemcells.2005-0595. PMID 16690778.
- ^ Jordan CT, Upchurch D, Szilvassy SJ, et al. (October 2000). “The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells”. Leukemia. 14(10): 1777–84. doi:10.1038/sj.leu.2401903. PMID 11021753.
- ^ Jendelová P, Herynek V, Urdzíková L, et al. (April 2004). “Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord”. Journal of Neuroscience Research. 76 (2): 232–43. doi:10.1002/jnr.20041. PMID 15048921.
- ^ Ziegler BL, Valtieri M, Porada GA, et al. (September 1999). “KDR receptor: a key marker defining hematopoietic stem cells”. Science. 285 (5433): 1553–8. doi:10.1126/science.285.5433.1553. PMID 10477517.
- ^ Misago N, Narisawa Y (September 2006). “Cytokeratin 15 expression in neoplasms with sebaceous differentiation”. Journal of Cutaneous Pathology. 33 (9): 634–41. doi:10.1111/j.1600-0560.2006.00500.x. PMID 16965339.
- ^ Tiede S, Koop N, Kloepper JE, Fässler R, Paus R (November 2009). “Nonviral in situ green fluorescent protein labeling and culture of primary, adult human hair follicle epithelial progenitor cells”. Stem Cells. 27 (11): 2793–803. doi:10.1002/stem.213. PMID 19750535.
- ^ Nijhof JG, Braun KM, Giangreco A, et al. (August 2006). “The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells”. Development. 133 (15): 3027–37. doi:10.1242/dev.02443. PMID 16818453.
- ^ Youn SW, Kim DS, Cho HJ, et al. (August 2004). “Cellular senescence induced loss of stem cell proportion in the skin in vitro”. Journal of Dermatological Science. 35 (2): 113–23. doi:10.1016/j.jdermsci.2004.04.002. PMID 15265523.
- ^ Fu XB, Sun TZ, Li XK, Sheng ZY (February 2005). “Morphological and distribution characteristics of sweat glands in hypertrophic scar and their possible effects on sweat gland regeneration”. Chinese Medical Journal. 118 (3): 186–91. PMID 15740645.
- ^ ab Clarke RB (December 2005). “Isolation and characterization of human mammary stem cells”. Cell Proliferation. 38 (6): 375–86. doi:10.1111/j.1365-2184.2005.00357.x. PMID 16300651.
- ^ Perry SS, Wang H, Pierce LJ, Yang AM, Tsai S, Spangrude GJ (April 2004). “L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor”. Blood. 103 (8): 2990–6. doi:10.1182/blood-2003-09-3030. PMID 15070675.
- ^ Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB (January 2006). “Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation”. Stem Cells. 24(1): 177–85. doi:10.1634/stemcells.2004-0159. PMID 16179429.
- ^ Muramatsu T, Muramatsu H (2004). “Carbohydrate antigens expressed on stem cells and early embryonic cells”. Glycoconjugate Journal. 21 (1–2): 41–5. doi:10.1023/B:GLYC.0000043746.77504.28. PMID 15467397.
- ^ Ganat YM, Silbereis J, Cave C, et al. (August 2006). “Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo”. The Journal of Neuroscience. 26 (33): 8609–21. doi:10.1523/JNEUROSCI.2532-06.2006. PMID 16914687.
- ^ van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007). “Identification of stem cells in small intestine and colon by marker gene Lgr5”. Nature. 449 (7165): 1003–1007. doi:10.1038/nature06196. PMID 17934449.
- ^ Yamaguchi YL, Tanaka SS, Kasa M, Yasuda K, Tam PP, Matsui Y (August 2006). “Expression of low density lipoprotein receptor-related protein 4 (Lrp4) gene in the mouse germ cells”. Gene Expression Patterns. 6 (6): 607–12. doi:10.1016/j.modgep.2005.11.013. PMID 16434236.
- ^ Mohan A, Kandalam M, Ramkumar HL, Gopal L, Krishnakumar S (July 2006). “Stem cell markers: ABCG2 and MCM2 expression in retinoblastoma”. The British Journal of Ophthalmology. 90(7): 889–93. doi:10.1136/bjo.2005.089219. PMC 1857132 . PMID 16556617.
- ^ Legg J, Jensen UB, Broad S, Leigh I, Watt FM (December 2003). “Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis”. Development. 130 (24): 6049–63. doi:10.1242/dev.00837. PMID 14573520.
- ^ Donnelly ET, Bardwell H, Thomas GA, et al. (June 2005). “Metallothionein crypt-restricted immunopositivity indices (MTCRII) correlate with aberrant crypt foci (ACF) in mouse colon”. British Journal of Cancer. 92 (12): 2160–5. doi:10.1038/sj.bjc.6602633. PMC 2361830 . PMID 15928667.
- ^ Hutter JJ, Hecht F, Kaiser-McCaw B, et al. (1984). “Bone marrow monosomy 7: hematologic and clinical manifestations in childhood and adolescence”. Hematological Oncology. 2 (1): 5–12. doi:10.1002/hon.2900020103. PMID 6588021.
- ^ Colombo E, Galli R, Cossu G, Gécz J, Broccoli V (November 2004). “Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons”. Developmental Dynamics. 231 (3): 631–9. doi:10.1002/dvdy.20164. PMID 15376319.
- ^ Steinbach D, Wittig S, Cario G, et al. (December 2003). “The multidrug resistance-associated protein 3 (MRP3) is associated with a poor outcome in childhood ALL and may account for the worse prognosis in male patients and T-cell immunophenotype”. Blood. 102 (13): 4493–8. doi:10.1182/blood-2002-11-3461. PMID 12816874.
- ^ ab Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS (January 2005). “A putative human breast stem cell population is enriched for steroid receptor-positive cells”. Developmental Biology. 277 (2): 443–56. doi:10.1016/j.ydbio.2004.07.044. PMID 15617686.
- ^ Yoshida S, Shimmura S, Nagoshi N, et al. (December 2006). “Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea”. Stem Cells. 24 (12): 2714–22. doi:10.1634/stemcells.2006-0156. PMID 16888282.
- ^ Staud F, Pavek P (April 2005). “Breast cancer resistance protein (BCRP/ABCG2)”. The International Journal of Biochemistry & Cell Biology. 37 (4): 720–5. doi:10.1016/j.biocel.2004.11.004. PMID 15694832.
- ^ Loo DT, Althoen MC, Cotman CW (October 1995). “Differentiation of serum-free mouse embryo cells into astrocytes is accompanied by induction of glutamine synthetase activity”. Journal of Neuroscience Research. 42 (2): 184–91. doi:10.1002/jnr.490420205. PMID 8568918.
- ^ Okawa H, Okuda O, Arai H, Sakuragawa N, Sato K (December 2001). “Amniotic epithelial cells transform into neuron-like cells in the ischemic brain”. NeuroReport. 12 (18): 4003–7. doi:10.1097/00001756-200112210-00030. PMID 11742228.
- ^ Neudenberger J, Hotfilder M, Rosemann A, et al. (May 2006). “Lack of expression of the chondroitin sulphate proteoglycan neuron-glial antigen 2 on candidate stem cell populations in paediatric acute myeloid leukaemia/abn(11q23) and acute lymphoblastic leukaemia/t(4;11)”. British Journal of Haematology. 133 (3): 337–44. doi:10.1111/j.1365-2141.2006.06013.x. PMID 16643437.
- ^ Umemoto T, Yamato M, Nishida K, et al. (December 2005). “Rat limbal epithelial side population cells exhibit a distinct expression of stem cell markers that are lacking in side population cells from the central cornea”. FEBS Letters. 579 (29): 6569–74. doi:10.1016/j.febslet.2005.10.047. PMID 16297384.
- ^ Imaoka S, Mori T, Kinoshita T (February 2007). “Bisphenol A causes malformation of the head region in embryos of Xenopus laevis and decreases the expression of the ESR-1 gene mediated by Notch signaling”. Biological & Pharmaceutical Bulletin. 30 (2): 371–4. doi:10.1248/bpb.30.371. PMID 17268083.[dead link]
- ^ Kafienah W, Mistry S, Williams C, Hollander AP (April 2006). “Nucleostemin is a marker of proliferating stromal stem cells in adult human bone marrow”. Stem Cells. 24 (4): 1113–20. doi:10.1634/stemcells.2005-0416. PMID 16282439.
- ^ Sigal SH, Brill S, Reid LM, et al. (April 1994). “Characterization and enrichment of fetal rat hepatoblasts by immunoadsorption (“panning”) and fluorescence-activated cell sorting”. Hepatology. 19 (4): 999–1006. doi:10.1002/hep.1840190427. PMID 7511129.
- ^ Raman JD, Mongan NP, Liu L, et al. (March 2006). “Decreased expression of the human stem cell marker, Rex-1 (zfp-42), in renal cell carcinoma”. Carcinogenesis. 27 (3): 499–507. doi:10.1093/carcin/bgi299. PMID 16344273.
- ^ Maduro MR, Davis E, Davis A, Lamb DJ (May 2002). “Osteotesticular protein tyrosine phosphatase expression in rodent testis”. The Journal of Urology. 167 (5): 2282–3. doi:10.1016/S0022-5347(05)65143-9. PMID 11956493.
- ^ Tokura Y, Shikami M, Miwa H, et al. (January 2002). “Augmented expression of P-gp/multi-drug resistance gene by all-trans retinoic acid in monocytic leukemic cells”. Leukemia Research. 26 (1): 29–36. doi:10.1016/S0145-2126(01)00094-7. PMID 11734301.
- ^ Ramirez RD, Sheridan S, Girard L, et al. (December 2004). “Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins”. Cancer Research. 64 (24): 9027–34. doi:10.1158/0008-5472.CAN-04-3703. PMID 15604268.
- ^ ab Wong CE, Paratore C, Dours-Zimmermann MT, et al. (December 2006). “Neural crest–derived cells with stem cell features can be traced back to multiple lineages in the adult skin”. The Journal of Cell Biology. 175 (6): 1005–15. doi:10.1083/jcb.200606062. PMC 2064709 . PMID 17158956.
- ^ Kerosuo L, Juvonen E, Alitalo R, Gylling M, Kerjaschki D, Miettinen A (March 2004). “Podocalyxin in human haematopoietic cells”. British Journal of Haematology. 124 (6): 809–18. doi:10.1111/j.1365-2141.2004.04840.x. PMID 15009070.
- ^ Fu XB, Xing F, Yang YH, Sun TZ, Guo BC (September 2003). “Activation of phosphorylating-p38 mitogen-activated protein kinase and its relationship with localization of intestinal stem cells in rats after ischemia-reperfusion injury”. World Journal of Gastroenterology. 9 (9): 2036–9. PMID 12970901.
- ^ Doyonnas R, Nielsen JS, Chelliah S, et al. (June 2005). “Podocalyxin is a CD34-related marker of murine hematopoietic stem cells and embryonic erythroid cells”. Blood. 105 (11): 4170–8. doi:10.1182/blood-2004-10-4077. PMID 15701716.
- ^ Ortega M, Rovira M, Filella X, et al. (March 2006). “Prospective evaluation of procalcitonin in adults with non-neutropenic fever after allogeneic hematopoietic stem cell transplantation”. Bone Marrow Transplantation. 37 (5): 499–502. doi:10.1038/sj.bmt.1705262. PMID 16415895.
- ^ Suzuki A, Nakauchi H, Taniguchi H (August 2004). “Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting”. Diabetes. 53 (8): 2143–52. doi:10.2337/diabetes.53.8.2143. PMID 15277399.
- ^ Bucchini D, Lasserre C, Kunst F, Lovell-Badge R, Pictet R, Jami J (1983). “Stable transformation of mouse teratocarcinoma stem cells with the dominant selective marker Eco.gpt and retention of their developmental potentialities”. The EMBO Journal. 2 (2): 229–32. PMC 555118 . PMID 11894931.
- ^ Braun KM, Watt FM (September 2004). “Epidermal label-retaining cells: background and recent applications”. The Journal of Investigative Dermatology. 9 (3): 196–201. doi:10.1111/j.1087-0024.2004.09313.x. PMID 15369213.
- ^ Rubin DC, Swietlicki E, Roth KA, Gordon JI (25 July 1992). “Use of fetal intestinal isografts from normal and transgenic mice to study the programming of positional information along the duodenal-to-colonic axis”. The Journal of Biological Chemistry. 267 (21): 15122–33. PMID 1634547.
- ^ Nakafuku M, Nakamura S (June 1995). “Establishment and characterization of a multipotential neural cell line that can conditionally generate neurons, astrocytes, and oligodendrocytes in vitro”. Journal of Neuroscience Research. 41 (2): 153–68. doi:10.1002/jnr.490410203. PMID 7650751.
- ^ Lamoury FM, Croitoru-Lamoury J, Brew BJ (2006). “Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1”. Cytotherapy. 8 (3): 228–42. doi:10.1080/14653240600735875. PMID 16793732.
- ^ Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (October 2002). “Myogenic specification of side population cells in skeletal muscle”. The Journal of Cell Biology. 159 (1): 123–34. doi:10.1083/jcb.200202092. PMC 2173497 . PMID 12379804.
- ^ Timper K, Seboek D, Eberhardt M, et al. (March 2006). “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells”. Biochemical and Biophysical Research Communications. 341 (4): 1135–40. doi:10.1016/j.bbrc.2006.01.072. PMID 16460677.
- ^ Barone, Angela; Säljö, Karin; Benktander, John; Blomqvist, Maria; Månsson, Jan-Eric; Johansson, Bengt R.; Mölne, Johan; Aspegren, Anders; Björquist, Petter (2014-07-04). “Sialyl-lactotetra, a novel cell surface marker of undifferentiated human pluripotent stem cells”. The Journal of Biological Chemistry. 289(27): 18846–18859. doi:10.1074/jbc.M114.568832. ISSN 1083-351X. PMC 4081926 . PMID 24841197.
- ^ Hirao A, Arai F, Suda T (December 2004). “Regulation of cell cycle in hematopoietic stem cells by the niche”. Cell Cycle. 3(12): 1481–3. doi:10.4161/cc.3.12.1281. PMID 15539950.
- ^ Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (December 2005). “Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice”. Proceedings of the National Academy of Sciences of the United States of America. 102 (50): 18171–6. doi:10.1073/pnas.0508945102. PMC 1312406 . PMID 16330757.
- ^ Sottile V, Li M, Scotting PJ (July 2006). “Stem cell marker expression in the Bergmann glia population of the adult mouse brain”. Brain Research. 1099 (1): 8–17. doi:10.1016/j.brainres.2006.04.127. PMID 16797497.
- ^ Smalley MJ, Clarke RB (January 2005). “The mammary gland “side population”: a putative stem/progenitor cell marker?”. Journal of Mammary Gland Biology and Neoplasia. 10 (1): 37–47. doi:10.1007/s10911-005-2539-0. PMID 15886885.
- ^ Furue M, Okamoto T, Hayashi Y, et al. (2005). “Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells”. In Vitro Cellular & Developmental Biology. Animal. 41 (1–2): 19–28. doi:10.1290/0502010.1. PMID 15926856.
- ^ Przyborski SA (2001). “Isolation of human embryonal carcinoma stem cells by immunomagnetic sorting”. Stem Cells. 19 (6): 500–4. doi:10.1634/stemcells.19-6-500. PMID 11713341.
- ^ ab D’Ippolito G, Howard GA, Roos BA, Schiller PC (2006). “Sustained stromal stem cell self-renewal and osteoblastic differentiation during aging”. Rejuvenation Research. 9 (1): 10–9. doi:10.1089/rej.2006.9.10. PMID 16608390.
- ^ Kues WA, Petersen B, Mysegades W, Carnwath JW, Niemann H (April 2005). “Isolation of murine and porcine fetal stem cells from somatic tissue”. Biology of Reproduction. 72 (4): 1020–8. doi:10.1095/biolreprod.104.031229. PMID 15616223.
- ^ Nemetz C, Hocke GM (March 1998). “Transcription factor Stat5 is an early marker of differentiation of murine embryonic stem cells”. Differentiation. 62 (5): 213–20. doi:10.1046/j.1432-0436.1998.6250213.x. PMID 9566306.
- ^ Falender AE, Freiman RN, Geles KG, et al. (April 2005). “Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID”. Genes & Development. 19 (7): 794–803. doi:10.1101/gad.1290105. PMC 1074317 . PMID 15774719.
- ^ Caddick J, Kingham PJ, Gardiner NJ, Wiberg M, Terenghi G (December 2006). “Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage”. Glia. 54 (8): 840–9. doi:10.1002/glia.20421. PMID 16977603.
- ^ Snipes RG, Lam KW, Dodd RC, Gray TK, Cohen MS (1 March 1986). “Acid phosphatase activity in mononuclear phagocytes and the U937 cell line: monocyte-derived macrophages express tartrate-resistant acid phosphatase”. Blood. 67 (3): 729–34. PMID 3511985.
- ^ Krause JR, Brody JP, Kaplan SS, Penchansky L (June 1986). “Terminal deoxynucleotidyl transferase activity in acute leukemia: a study of 100 cases comparing an immunoperoxidase (PAP) vs immunofluorescent method”. American Journal of Hematology. 22(2): 179–84. doi:10.1002/ajh.2830220208. PMID 3518417.
- ^ Nakano T, Waki N, Asai H, Kitamura Y (1 December 1987). “Long-term monoclonal reconstitution of erythropoiesis in genetically anemic W/Wv mice by injection of 5-fluorouracil-treated bone marrow cells of Pgk-1b/Pgk-1a mice”. Blood. 70(6): 1758–63. PMID 2890388.
- ^ McNagny KM, Pettersson I, Rossi F, et al. (September 1997). “Thrombomucin, a Novel Cell Surface Protein that Defines Thrombocytes and Multipotent Hematopoietic Progenitors”. The Journal of Cell Biology. 138 (6): 1395–407. doi:10.1083/jcb.138.6.1395. PMC 2132552 . PMID 9298993.
- ^ Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA (July 2006). “Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1”. American Journal of Physiology. 291 (1): G45–54. doi:10.1152/ajpgi.00465.2005. PMID 16769813.
- ^ Inniss K, Moore H (December 2006). “Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate”. Stem Cells and Development. 15 (6): 789–96. doi:10.1089/scd.2006.15.789. PMID 17253942.
- ^ Miller SJ, Rangwala F, Williams J, et al. (March 2006). “Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues”. Cancer Research. 66 (5): 2584–91. doi:10.1158/0008-5472.CAN-05-3330. PMID 16510576.
- ^ Pyakurel P, Pak F, Mwakigonja AR, Kaaya E, Heiden T, Biberfeld P (September 2006). “Lymphatic and vascular origin of Kaposi’s sarcoma spindle cells during tumor development”. International Journal of Cancer. 119 (6): 1262–7. doi:10.1002/ijc.21969. PMID 16615115.
- ^ Walder S, Zhang F, Ferretti P (December 2003). “Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord”. Development Genes and Evolution. 213 (12): 625–30. doi:10.1007/s00427-003-0364-2. PMID 14608505.
- ^ Baker CV, Sharpe CR, Torpey NP, Heasman J, Wylie CC (April 1995). “A Xenopus c-kit-related receptor tyrosine kinase expressed in migrating stem cells of the lateral line system”. Mechanisms of Development. 50 (2–3): 217–28. doi:10.1016/0925-4773(94)00338-N. PMID 7619732.
Stem Cell Markers
Contents
- Embryonic Stem Cell Markers
- Hematopoietic Stem Cell Markers
- Mesenchymal/Stromal Stem Cell Markers
- Neural Stem Cell Markers
- References
While stem cells are best defined functionally, a number of molecular markers have been used to characterize various stem cell populations.
Although functions have yet to be ascertained for many of these early markers, their unique expression pattern and timing provide a useful tool for scientists to initially identify as well as isolate stem cells. This mini-review summarizes evidence regarding the roles of specific markers in defining embryonic, hematopoietic, mesenchymal/stromal, and neural stem cell populations. For most of the molecules discussed, studies performed both in vitro and in vivo support their significant role in characterizing stem cells. Until more is known about the novel marker-negative stem cell population, however, uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells for stem cell research.
Embryonic Stem Cell Markers
Oct-4: Oct-4 (also termed Oct-3 or Oct-3/4), one of the POU transcription factors, was originally identified as a DNA-binding protein that activates gene transcription via a cis-element containing octamer motif.1 It is expressed in totipotent embryonic stem and germ cells.2, 3 A critical level of Oct-4 expression is required to sustain stem cell self-renewal and pluripotency.4 Differentiation of embryonic stem (ES) cells results in down- regulation of Oct-4, an event essential for a proper and divergent developmental program.5 Oct-4 is not only a master regulator of pluripotency that controls lineage commitment, but is also the first and most recognized marker used for the identification of totipotent ES cells.
SSEAs (Stage Specific Embryonic Antigens): SSEAs were originally identified by three monoclonal antibodies (Abs) recognizing defined carbohydrate epitopes associated with lacto- and globo-series glycolipids, SSEA-1, -3 and – 4.6 SSEA-1 is expressed on the surface of preimplantation-stage murine embryos (i.e. at the eight cell stage) and has been found on the surface of teratocarcinoma stem cells, but not on their differentiated derivatives.7, 8 The oviduct epithelium, endometrium and epididymis, as well as some areas of the brain and kidney tubules in adult mice have also been shown to be reactive with SSEA-1 Abs.9 SSEA-3 and -4 are synthesized during oogenesis and are present in the membranes of oocytes, zygotes and early cleavage-stage embryos.10, 11 Biological roles of these carbohydrate-associated molecules have been suggested in controlling cell surface interactions during development.6 Undifferentiated primate ES cells, human EC and ES cells express SSEA-3 and SSEA-4, but not SSEA-1. Undifferentiated mouse ES cells express SSEA-1, but not SSEA-3 or SSEA-4.12, 13
Hematopoietic Stem Cell Markers
View Larger Image |
Figure 1. A structure model of CD133 proposed by Miraglia S. et al.30 This protein has an extracellular N-terminus, 5 hydrophobic transmembrane domains, 2 small cytoplasmic loops, 2 large extracellular loops and a cytoplasmic C-termus. |
CD34: The cell surface sialomucin CD34 has been a focus of interest ever since it was found expressed on a small fraction of human bone marrow cells.14 The CD34+-enriched cell population from marrow or mobilized peripheral blood appears responsible for most of the hematopoietic activity.14, 15, 16, 17, 18, 19, 20, 21CD34 has therefore been considered to be the most critical marker for hematopoietic stem cells (HSCs). CD34 expression on primitive cells is down-regulated as they differentiate into mature cells.22 It is also found on clonogenic progenitors, however, and some lineage-committed cells.23 Although its precise function is still unknown, the pattern of expression of CD34 suggests that it plays a significant role in early hematopoiesis.22 The theory of CD34 being the most primitive HSC marker, however, has recently been challenged. Osawa et al. first demonstrated that murine HSCs could be CD34 negative.24 In addition, a low level of engraftment and hematopoietic capacity has been demonstrated in human CD34– cells.25 Transplantation studies also showed repopulating activity in a CD34– cell population in fetal sheep.26 Additionally, studies have shown that both murine and human CD34+ cells may be derived from CD34– cells.27, 28 Collectively, these reports suggest the possibility that HSCs may be CD34+ or CD34– and that selection of cells expressing CD34 might result in exclusion of more primitive stem cells. Nevertheless, almost all clinical and experimental protocols including ex vivo culture, gene therapy, and HSC transplantation are currently designed for cell populations enriched for CD34+ cells.
View Larger Image |
Figure 2. The family of ABC transporters is characterized by the presence of an ATP-binding cassette region, which hydrolyzes ATP to support energy- dependent substrate exportation from the intracellular cytoplasm to the extracellular space. Full-length transporters contain two mirror image halves that are separated by a flexible linker region (not shown). Half-transporters, e.g. ABCG2, function as homo- or heterodimers and may be localized to the plasma membrane. |
CD133: CD133, a 120 kDa, glycosylated protein containing five transmembrane domains (Figure 1), was identified initially by the AC133 monoclonal Ab, which recognizes a CD34+ subset of human HSCs.29, 30 A CD133 isoform, AC133-2, has been recently cloned and identified as the original surface antigen recognized by the AC133 Ab.31 CD133 may provide an alternative to CD34 for HSC selection and ex vivo expansion. A CD133+ enriched subset can be expanded in a similar manner as a CD34+ enriched subset, retaining its multilineage capacity.32 Recent studies have offered evidence that CD133 expression is not limited to primitive blood cells, but defines unique cell populations in non-hematopoietic tissues as well. CD133+ progenitor cells from peripheral blood can be induced to differentiate into endothelial cells in vitro.33 In addition, human neural stem cells can be directly isolated by using an anti-CD133 Ab.34
ABCG2: ABCG2 (ATP-binding cassette superfamily G member 2) is a determinant of the Hoechst-negative phenotype of side population (SP) cells and found in a wide variety of stem cells, including HSC.35, 36 ABCG2 is a member of the family of ABC transporters and was first identified in a breast cancer cell line.37 It belongs to the half-transporter group and is unique as it is localized to the plasma membrane (Figure 2).38 The expression of ABCG2 appears greatest on CD34–cells and is down-regulated with the acquisition of CD34 on the cell surface.35 Down-regulation in ABCG2 expression is also observed in various committed hematopoietic progenitors.39 ABCG2 may therefore serve as a more promising marker than CD34 for primitive HSC isolation and characterization. The expression pattern of ABCG2, however, is not limited to HSC. ABCG2 expression exclusively characterizes the Hoechst SP phenotype in cells from diverse sources, including monkey bone marrow, mouse skeletal muscle and ES cells.35 The potential plasticity of SP cells has been demonstrated by studies showing that cardiomyocytes and muscle can be regenerated from transplanted bone marrow-derived SP cells.40, 41 Exclusive expression of ABCG2 on SP cells suggests that ABCG2 may be a potential marker for positive selection of pluripotent stem cells from various adult sources. ABCG2 has been implicated in playing a functional role in developmental stem cell biology (see reference 42 for a review).
Sca-1: Sca-1 (stem cell antigen 1, Ly-6A/E), an 18 kDa phosphatidylinositol-anchored protein, is a member of the Ly-6 antigen family.43 Sca-1 is the most recognized HSC marker in mice with both Ly-6 haplotypes as it is expressed on multipotent HSCs.44, 45 An anti-Sca-1 Ab is frequently used in combination with negative selection for expression of a number of cell surface markers characteristic of differentiated cells of hematolymphoid lineages (Lin–) to identify and isolate murine HSCs. Sca-1+ HSCs can be found in the adult bone marrow, fetal liver and mobilized peripheral blood and spleen within the adult animal.44, 45, 46, 47, 48, 49Sca-1 has also been discovered in several non-hematopoietic tissues,43 however, and can be used to enrich progenitor cell populations other than HSCs.50 Sca-1 may be involved in regulating both B and T cell activation.51, 52, 53, 54
Mesenchymal/Stromal Stem Cell Markers
STRO-1: The murine IgM monoclonal Ab STRO-1, produced from an immunization with a population of human CD34+ bone marrow cells, can identify a cell surface antigen expressed by stromal elements in human bone marrow.55 From bone marrow cells, the frequency of fibroblast colony-forming cells (CFU-F) is enriched approximately 100-fold in the STRO-1+/Glycophorin A– population than in the STRO-1+/Glycophorin A+ population.55 A STRO-1+ enriched subset of marrow cells is capable of differentiating into multiple mesenchymal lineages including hematopoiesis-supportive stromal cells with a vascular smooth muscle-like phenotype, adipocytes, osteoblasts and chondrocytes.56, 57, 58, 59 STRO-1 is a valuable Ab for the identification, isolation and functional characterization of human bone marrow stromal cell precursors, which are quite distinct from those of primitive HSCs.
Neural Stem Cell Markers
Nestin: Nestin is a class VI intermediate filament protein.60,61 Although it is expressed predominantly in stem cells of the central nervous system (CNS),62 its expression is absent from nearly all mature CNS cells.63 Nestin has been the most extensively used marker to identify CNS stem cells within various areas of the developing nervous system and in cultured cells in vitro.34, 64, 65, 66, 67,68 The role of nestin in CNS stem cell biology, however, remains undefined. Although nestin does not form intermediate filaments by itself in vitro it does co-assemble with vimentin or alpha-internexin to form and heterodimer, coiled-coil complexes that may then form intermediate filaments.69 Its transient expression has been suggested to be a major step in the neural differentiation pathway.61 Nestin expression has also been discovered in non-neural stem cell populations, such as pancreatic islet progenitors70, 71, 72 as well as hematopoietic progenitors.73
PSA-NCAM (Polysialic acid-neural cell adhesion molecule): The regulated expression of neural cell adhesion molecule (NCAM) isoforms in the brain is critical for many neural developmental processes. The embryonic form of NCAM, PSA-NCAM, is highly polysialylated and is mainly expressed in the developing nervous system.74 PSA-NCAM may be related to synaptic rearrangement and plasticity.75 In the adult, PSA-NCAM expression is restricted to regions that retain plasticity.76A neuronal-restricted precursor identified by its high expression of PSA-NCAM can undergo self-renewal and differentiate into multiple neuronal phenotypes.77PSA-NCAM+ neonatal brain precursors are restricted to a glial fate and thyroid hormone can modulate them into an oligodendrocyte fate.78, 79, 80 Polysialic acid modification significantly decreases NCAM adhesiveness and therefore, it was originally suggested PSA-NCAM works as a purely anti-adhesive factor that modulates cell-cell interactions in promoting brain plasticity. Increasing evidence indicates that PSA-NCAM may interact with secreted signaling molecules to perform an instructive role in development.81, 82
View Larger Image |
Figure 3. The structure of NGF with a model of the p75 Neurotrophin Receptor. The extracellular domain of the receptor is taken from the tumor necrosis factor receptor structure and the intracellular portion contains a death domain. |
p75 Neurotrophin R (NTR): p75 NTR, also named low affinity nerve growth factor (NGF) receptor, is a type I transmembrane protein that belongs to the tumor necrosis factor receptor superfamily (Figure 3).83 It binds to NGF, BDNF, NT-3 and NT-4 equally (with low affinity). p75NTR, when activated in the presence of Trk, enhances responses to neurotrophin (see reference 84 for a review). TrkC receptors working together with p75 NTR have been suggested to serve critical functions during the development of the nervous system.85 Neural crest stem cells (NCSCs) have been isolated based on their surface expression of p75NTR.86,87 Freshly isolated p75NTR+ NCSCs from peripheral nerve tissues can self-renew and generate neurons and glia both in vitro and in vivo. In addition, neuroepithelial-derived p75NTR+ cells are also able to differentiate into neurons, smooth muscle and Schwann cells in culture.88 Recently, p75 NTR has been used as a marker to identify mesenchymal precursors as well as hepatic stellate cells.89, 90
References
- Scholer, H.R. et al. (1990) Nature 344:435.
- Scholer, H.R. et al. (1989) EMBO J. 8:2543.
- Rosner, M.H. et al. (1990) Nature 345:686.
- Niwa, H. et al. (2000) Nat. Genet. 24:372.
- Pesce, M. et al. (2001) Stem Cells 19:271.
- Bruce, A. et al. (1990) BioEssays 12:173.
- Solter, D. et al. (1978) Proc. Natl. Acad. Sci. USA 75:5565.
- Knowles, B.B. et al. (1980) Nature 288:615.
- Fox, N. et al. (1981) Dev. Biol. 83:391.
- Shevinsky, L.H. et al. (1982) Cell 30:697.
- Kannagi, R. et al. (1983) EMBO J. 2:2355.
- Thomson, J.A. et al. (1998) Science 282:1145.
- Thomson, J.A. et al. (1998) Curr. Top. Dev. Biol. 38:133.
- Civin, C.I. et al. (1984) J. Immunol. 133:157.
- Sutherland, H.J. et al. (1989) Blood 74:1563.
- Bhatis, M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:5320.
- Berenson, R.J. et al. (1988) J. Clin. Invest. 81:951.
- Civin, C.I. et al. (1996) J. Clin. Oncol. 14:2224.
- Link, H. et al. (1996) Blood 87:4903.
- Shpall, E.J. et al. (1997) Blood 90:4313.
- Yabe, H. et al. (1996) Bone Marrow Transplant. 17:985.
- Sutherland, D.R. et al. (1992) J. Hematother. 1:115.
- Andrew, R. et al. (1989) J. Exp. Med. 169:1721.
- Osawa, M. et al. (1996) Science 273:242.
- Bhatis, M. et al. (1998) Nat. Med. 4:1038.
- Zanjani, E.D. et al. (1998) Exp. Hematol. 26:353.
- Nakamura, Y. et al. (1999) Blood 94:4053.
- Sato, T. et al. (1999) Blood 94:2548.
- Yin, A.H. et al. (1997) Blood 90:5002.
- Miraglia, S. et al. (1997) Blood 90:5013.
- Yu, Y. et al. (2002) J. Biol. Chem. 277:20711.
- Kobari, L. et al. (2001) J. Hematother. Stem Cell Res. 10:273.
- Gehling, U.M. et al. (2000) Blood 95:3106.
- Uchida, N. et al. (2000) Proc. Natl. Acad. Sci. USA 97:14720.
- Zhou, S. et al. (2001) Nat. Med. 7:1028.
- Kim, M. et al. (2002) Clin. Cancer Res. 8:22.
- Doyle, L.A. et al. (1998) Proc. Natl. Acad. Sci. USA 95:15665.
- Rocchi, E. et al. (2000) Biochem. Biophys. Res. Commun.271:42.
- Scharenberg, C.W. et al. (2002) Blood 99:507.
- Jackson, K.A. et al. (2001) J. Clin. Invest. 107:1395.
- Gussoni, E. et al. (1999) Nature 401:390.
- Bunting, K.D. (2002) Stem Cells 20:11.
- Van de Rijn, M. et al. (1989) Proc. Natl. Acad. Sci. USA 86:4634.
- Spangrude, G.I. et al. (1988) Science 241:58.
- Spangrude, G.I. et al. (1993) Blood 82:3327.
- Morrison, S.J. et al. (1995) Proc. Natl. Acad. Sci. USA 92:10302.
- Kawamoto, H. et al. (1997) Int. Immunol. 9:1011.
- Yamamoto, Y. et al. (1996) Blood 88:445.
- Morrison, S.J. et al. (1997) Proc. Natl. Acad. Sci. USA 94:1908.
- Welm, B.E. et al. (2002) Dev. Biol. 245:42.
- Codias, E.K. et al. (1990) J. Immunol. 144:2197.
- Malek, T.R. et al. (1986) J. Exp. Med. 164:709.
- Codias, E.K. et al. (1990) J. Immunol. 145:1407.
- Flood, P.M. et al. (1990) J. Exp. Med. 172:115.
- Simmons, P.J. et al. (1991) Blood 78:55.
- Gronthos, S. et al. (1994) Blood 84:4164.
- Encina, N.R. et al. (1999) Lab. Invest. 79:449.
- Oyajobi, B.O. et al. (1999) J. Bone. Miner. Res. 14:351.
- Dennis, J.E. et al. (2002) Cells Tissues Organs 170:73.
- Hockfield, S. et al. (1985) J. Neurosci. 5:3310.
- Lendahl, U. et al. (1990) Cell 60:585.
- Frederiksen, K. et al. (1988) J. Neurosci. 8:1144.
- Tohyama, T. et al. (1992) Lab. Invest. 66:303.
- Frederiksen, K. et al. (1988) Neuron 1:439.
- Cattaneo, C. et al. (1990) Nature 347:762.
- Reynolds, B.A. et al. (1992) Science 255:1707.
- Rietze, R.L. et al. (2001) Nature 412:736.
- Carpenter, M.K. et al. (2001) Exp. Neurol. 172:383.
- Steinert, P.M. et al. (1999) J. Biol. Chem. 274:9881.
- Zulewski, H. et al. (2001) Diabetes 50:521.
- Lumelsky, N. et al. (2001) Science 292:1389.
- Lechner, A. et al. (2002) Biochem. Biophys. Res. Commun. 293:670.
- Shih, C.C. et al. (2001) Blood 98:2412.
- Kiss, J.Z. et al. (2001) Rev. Neurosci. 12:297.
- Muller, D. et al. (1996) Neuron 17:413.
- Theodosis, D.T. et al. (1994) Psychoneuroendocrinology 19:455.
- Mayer-Proschel, M. et al. (1997) Neuron 19:773.
- Ben-Hur, T. et al. (1998) J. Neurosci. 18:5777.
- Theodosis, D.T. et al. (1999) J. Neurosci. 19:10228.
- Keirstead, H.S. et al. (1999) J. Neurosci. 19:7529.
- Muller, D. et al. (2000) Proc. Natl. Acad. Sci. USA 97:4315.
- Kiss, J.Z. et al. (2001) Brain Res. Brain Res. Rev. 36:175.
- Barker, P.A. et al. (1992) Mol. Cell. Biochem. 110:1.
- Kaplan, D.R. et al. (1997) Curr. Opin. Cell. Biol. 9:213.
- Hapner, S.J. et al. (1998) Dev. Biol. 201:90.
- Stemple, D.L. et al. (1992) Cell 71:973.
- Morrison, S.J. et al. (1999) Cell 96:737.
- Mujtaba, T. et al. (1998) Dev. Biol. 200:1.
- Campagnolo, L. et al. (2001) Biol. Reprod. 64:464.
- Cassiman, D. et al. (2001) Hepatology 33:148.